Land degradation is one of the major causes of decline in soil productivity. However, the quantitative relationship between degradation and productivity is not fully understood in soils of India. Thus, an experiment was conducted under a range of native soil organic carbon (SOC) levels in two soil types (Inceptisol and Alfisol) of subtropical India. The SOC content under the treatments was 1.61%, 1.01% and 0.77% in Inceptisol and 0.36%, 0.25% and 0.21% in Alfisol under C1 (undepleted soil), C2 (low depletion) and C3 (medium depletion) treatments respectively. Soybean was grown under each SOC level, with four management practices, viz. (1) control, (2) recommended dose of fertilizers (RDF) + 10 Mg farmyard manure (FYM) ha-1, (3) 20 Mg FYM ha-1 and (4) 150% RDF, in three replicates in a factorial completely randomized design. Results indicated significant and positive effect of both SOC and management treatment on plant biomass yield, labile (KMnO4 oxidizable) carbon, soil microbial biomass carbon (SMBC), dehydrogenase activity, soil bulk density (BD) and penetration resistance (PR). The plant biomass reduced by 45% and 29% under C3 (compared to C1) in Inceptisol and Alfisol respectively. The effect of SOC depletion was conspicuous in Inceptisol. The labile C reduced by 47% and 16% under C3 in Inceptisol and Alfisol respectively. SMBC showed a corresponding decrease of 33% and 29%. The soil physical properties, viz. BD and PR showed conspicuous effect of SOC depletion. PR increased by 324% and 75% for Inceptisol and Alfisol respectively.
Keywords
Labile Carbon, Soil Degradation and Productivity, Soil Microbial Biomass, Soil Physical Properties.
User
Font Size
Information