Open Access Open Access  Restricted Access Subscription Access

The Upgraded GMRT:Opening New Windows on the Radio Universe


Affiliations
1 National Centre for Radio Astrophysics-TIFR, Pune University Campus, Pune 411 007, India
 

The Giant Metrewave Radio Telescope (GMRT) is today a frontline international facility for low-frequency radio astronomy, that has produced several exciting and important new results in the 15 years that it has been operational. To keep the GMRT competitive in the global arena in the future, a major upgrade of the observatory is nearing completion that will increase its sensitivity by up to three times and make it a more powerful and versatile facility. We describe the main goals of this upgrade, highlight the technical features and challenges, outline the science potential and update the current status of this venture.

Keywords

Radio Telescope, Upgrade, Scientific Potential, Technical Challenges.
User
Notifications
Font Size

  • Swarup, G. et al., The Giant Metrewave Radio Telescope. Curr. Sci., 1991, 60, 95–105.
  • Ananthakrishnan, S., The Giant Metrewave Radio Telescope. J. Astrophys. Astron., 1995, 16, 427–435.
  • Gupta, Y., The GMRT: current status and upgrade plans. In The Metrewavelength Sky (eds Chengalur, J. N. and Gupta, Y.), ASI Conference Series, 2014, vol. 13, pp. 197–202.
  • Gupta Y. et al., Pulsar research with the GMRT: a status report. In Pulsar Astronomy – 2000 and Beyond, IAU Colloq. 2000, vol. 177, pp. 202, 277–278.
  • Chengalur, J. N. and Gupta, Y. (eds), Proceedings of the Metrewavelength Sky, ASI Conference Series, 2014, vol. 13.
  • van Haarlem, M. P. et al., LOFAR: The LOw-Frequency Array. A&A, 2013, 556, A2, 1–53.
  • Tingay, S. et al., The Murchison Widefield Array: the square kilometre array precursor at low radio frequencies. PASA, 2013, 30, e007, 1–21.
  • Ellingson, S. W. et al., The LWA1 radio telescope, IEEE trans. on antennas and propagation, 2013, vol. 61, pp. 2540–2549
  • Sureshkumar, S., Broadband feeds, frontend and fiber optic systems for the uGMRT. In The Metrewavelength Sky (eds Chengalur, J. N. and Gupta, Y.), ASI Conference Series, 2014, vol. 13, pp. 453–456.
  • Ajithkumar, B., Backend system for the uGMRT. In The Metre-wavelength Sky (eds Chengalur, J. N. and Gupta, Y.), ASI Conference Series, 2014, vol. 13, pp. 457–460.
  • Bhandari, H. R., Sankarasubramanian, G. and Praveen Kumar, A., Wideband feeds for the upgraded GMRT. In IOP Conference Series: Material Science and Engineering, 2013, vol. 44, 012023-1–012023-4.
  • Raut, A., Bhalerao, V. and Praveen Kumar, A., Front-end electronics for the upgraded GMRT. In IOP Conf. Series: Material Science and Engineering, 2013, vol. 44, 012025-1–012025-4.
  • Chatterjee, S., Raut, A. and Sureshkumar, S., Band pass filter bank design (250–500 MHz) for radio astronomy application based on metamaterial ZOR techniques. In IEEE Aerospace and Electronics System, 2015, vol. 30(3), pp. 22–29.
  • Reddy, S. H. et al., A Wideband digital back-end for the upgraded GMRT. J. Astron. Instrum., 2017, 6(1), 164011-1–164011-16.
  • Ajithkumar, B. et al., Next generation digital backends for the GMRT. In IOP Conference Series: Material Science and Engineering, 2013, vol. 44, 012024-1–012024-4.
  • Buch, K. D. et al., Towards real-time impulsive RFI mitigation for radio telescopes. J. Astron. Instrum., 2016, 5(4), 1641018-1–1641018-14.
  • Chaudhari, S. C. et al., Reducing effects of cross-talk in a radio telescope using Walsh Modulation. J. Astron. Instrum., 2017, 6(1), 164017-1–164017-11.
  • Kodilkar, J. P. et al., Developments of next generation monitor and control systems for radio telescopes. In IOP Conference Series: Material Science and Engineering, 2013, vol. 44, 012026-1–012026-4.
  • Nayak, S., In The Metrewavelength Sky (eds Chengalur, J. N. and Gupta, Y.), ASI Conference Series, 2014, vol. 13, pp. 465–468.
  • Raybole, P. A. et al., Real time prediction, detection and coexisting with satellite interference at GMRT. In Coexisting with Radio Frequency Interference (RFI2016), IEEE, 2016, pp. 96-100.
  • Bagde, S. K., GMRT servo system: overview of the upgrades. In The Metrewavelength Sky (eds Chengalur, J. N. and Gupta, Y.), ASI Conference Series, 2014, vol. 13, pp. 449–452.
  • Nandi, A. K., GMRT mechanical system: present status and future plans. In The Metrewavelength Sky (eds Chengalur, J. N. and Gupta, Y.), ASI Conference Series, 2014, vol. 13, pp. 461–464.
  • Morganti, R. et al., Cool outflows and HI absorbers with SKA. In Advancing Astrophysics with the Square Kilometre Array (eds Bourke, T. L. et al.), Proceedings of Science, 2015, 134.
  • Kanekar, N., Giant metrewave radio telescope detection of two new HI 21 cm absorbers at z ∼ 2. ApJL, 2014, 797, L20–L24.
  • Kanekar, N., Sethi, S. and Dwarakanath, K. S., The gas mass of star-forming galaxies at z ∼ 1.3. ApJL, 2016, 818, L28–L32.
  • Darling, J. and Giovanelli, R., A search for OH megamasers at z > 0.1. III. The complete survey. AJ, 2002, 124, 100–126.
  • Chengalur, J. N. and Kanekar, N., Constraining the variation of fundamental constants using 18 cm OH lines. Phys. Rev. Lett., 2003, 91, 241302.
  • Chengalur, J. N. and Kanekar, N., Widespread acetaldehyde near the Galactic Centre. A&A, 2003, 403, L43–L46.
  • Heiles, C. and Troland, T., The millennium Arecibo 21 centimeter absorption-line survey. II. Properties of the warm and cold neutral media. ApJ, 2003, 586, 1067–1093.
  • Roy, N., Kanekar, N., Braun, R. and Chengalur, J. N., The temperature of the diffuse HI in the Milky Way – I. High resolution HI-21 cm absorption studies. MNRAS, 2013, 436, 2352–2365.
  • Feretti, L. et al., Clusters of galaxies: observational properties of the diffuse radio emission. AARv, 2012, 20, 54–113.
  • Gendron-Marsolais, M. et al., Deep 230–470 MHz VLA observations of the mini-halo in the Perseus Cluster. MNRAS, 2017, 469, 3872–3880.
  • Kale, R. et al., Clusters of galaxies and the cosmic web with SKA. J. Astrophys. Astron., 2016, 37, 31–52.
  • Lal, D. V. and Rao, A. P., Giant metrewave radio telescope observations of X-shaped radio sources. MNRAS, 2007, 374, 1085–1102.
  • Kharb, P. et al., From nearby low luminosity AGN to high redshift radio galaxies: science interests with square kilometre array. J. Astrophys. Astron., 2016, 37, 34.
  • Callingham. J. R. et al., Extragalactic peaked-spectrum radio sources at low frequencies. ApJ, 2017, in press, doi:10.3847/1538-4357/836/2/174, arXiv:1701.02771.
  • Ishwara-Chandra C. H. et al., Deep GMRT 150-MHz observations of the LBDS-Lynx region: ultrasteep spectrum radio sources. MNRAS, 2010, 405, 436–446.
  • Beswick R. J. et al., SKA studies of nearby galaxies: starformation, accretion processes and molecular gas across all environments. In Advancing Astrophysics with the Square Kilometre Array (eds Bourke, T. L. et al.), Proceedings of Science, 2015, p. 70.
  • Chandra, P., Ray, A. and Bhatnagar, S., The late-time radio emission from SN 1993J at meter wavelengths. ApJ, 2004, 612, 974–987.
  • Prandoni I. and Seymour, N., Revealing the physics and evolution of galaxies and galaxy. clusters with SKA continuum surveys. In Advancing Astrophysics with the Square Kilometre Array (eds Bourke, T. L. et al.), Proceedings of Science, 2015, p. 991.
  • Roy, S. et al., Circularly polarized emission from the transient bursting radio source GCRT J1745-3009. ApJL, 2010, 712, L5–L9.
  • Chandra, P. et al., Explosive and radio-selected transients: transient astronomy with square kilometre array and its precursors. J. Astrophys. Astron., 2016, 37, 30.
  • Intema, H. T., Jagannathan, P., Mooley, K. P. and Frail, D. A., The GMRT 150 MHz all-sky radio survey: first alternative data release TGSS ADR1. A&A, 2017, 598, A78-1–A78-28.
  • Joshi, B. C. et al., Discovery of three new pulsars in a 610-MHz pulsar survey with the GMRT. MNRAS, 2009, 398, 943–948.
  • Bhattacharyya, B. et al., The GMRT high resolution southern sky survey for pulsars and transients. I. survey description and initial discoveries. ApJ, 2016, 817, 130–148.
  • Freire, P. C., Gupta, Y., Ransom, S. M. and Ishwara-Chandra, C. H., Giant metrewave radio telescope discovery of a millisecond pulsar in a very eccentric binary system. ApJL, 2004, 606, L53–L56.
  • Gupta, Y., Mitra, D., Green, D. A. and Acharyya, A., The discovery of PSR J1833-1034: the pulsar associated with the supernova remnant G21.5-0.9. Curr. Sci., 2005, 89, 853–856.
  • Roy, J., Gupta, Y. and Lewandowski, W., Observations of four glitches in the young pulsar J1833-1034 and study of its glitch activity. MNRAS, 2012, 424, 2213–2221.
  • Bhattacharyya, B. et al., GMRT discovery of PSR J1544+4937: an eclipsing black-widow pulsar identified with a Fermi-LAT source. ApJL, 2013, 773, L12–L17.
  • Gangadhara, R. T. and Gupta, Y., Understanding the radio emission geometry of PSR B0329+54. ApJ, 2001, 555, 31–39.
  • Bhattacharyya, B. et al., Discovery of a remarkable subpulse drift pattern in PSR B0818-41. MNRAS, 2010, 377, L10–L14.
  • Kijak, J. et al., Pulsars with gigahertz-peaked spectra. A&A, 2011, 531, A16–A19.
  • Basu, R., Athreya, R. and Mitra, D., Detection of off-pulse emission from PSR B0525+21 and B2045-16. ApJ, 2011, 728, 157–166.
  • Gajjar, V., Joshi, B. C. and Kramer, M., A survey of nulling pulsars using the Giant Meterwave Radio Telescope. MNRAS, 2012, 424, 1197–1205.
  • Mitra, D. et al., Metrewavelength single-pulse polarimetric emission survey. ApJ, 2016, 833, 28–45.
  • De, K., Gupta, Y. and Sharma, P., Detection of polarized quasiperiodic microstructure emission in millisecond pulsars. ApJL, 2016, 833, L10–L15.
  • Verbiest, J. P. W. et al., The International Pulsar Timing Array: First data release, MNRAS, 2016, 458, 1267–1288.
  • Lam, M. T. et al., Systematic and stochastic variations in pulsar dispersion measures. ApJ, 2016, 821, 66–68.
  • Kumar, U. et al., In Proceedings of IAU Symposium 291. Neutron Stars and Pulsars: Challenges and Opportunities after 80 years (eds van Leeuwen, J.), Cambridge University Press, 2012, pp. 434–436.
  • Kramer, M. et al., Simultaneous single-pulse observations of radio pulsars. IV. Flux density spectra of individual pulses. A&A, 2003, 407, 655–668.
  • Bhat, N. D. R. et al., Simultaneous single-pulse observations of radio pulsars. V. On the broadband nature of the pulse nulling phenomenon in PSR B1133+16. A&A, 2007, 462, 257–268.

Abstract Views: 365

PDF Views: 118




  • The Upgraded GMRT:Opening New Windows on the Radio Universe

Abstract Views: 365  |  PDF Views: 118

Authors

Y. Gupta
National Centre for Radio Astrophysics-TIFR, Pune University Campus, Pune 411 007, India
B. Ajithkumar
National Centre for Radio Astrophysics-TIFR, Pune University Campus, Pune 411 007, India
H. S. Kale
National Centre for Radio Astrophysics-TIFR, Pune University Campus, Pune 411 007, India
S. Nayak
National Centre for Radio Astrophysics-TIFR, Pune University Campus, Pune 411 007, India
S. Sabhapathy
National Centre for Radio Astrophysics-TIFR, Pune University Campus, Pune 411 007, India
S. Sureshkumar
National Centre for Radio Astrophysics-TIFR, Pune University Campus, Pune 411 007, India
R. V. Swami
National Centre for Radio Astrophysics-TIFR, Pune University Campus, Pune 411 007, India
J. N. Chengalur
National Centre for Radio Astrophysics-TIFR, Pune University Campus, Pune 411 007, India
S. K. Ghosh
National Centre for Radio Astrophysics-TIFR, Pune University Campus, Pune 411 007, India
C. H. Ishwara-Chandra
National Centre for Radio Astrophysics-TIFR, Pune University Campus, Pune 411 007, India
B. C. Joshi
National Centre for Radio Astrophysics-TIFR, Pune University Campus, Pune 411 007, India
N. Kanekar
National Centre for Radio Astrophysics-TIFR, Pune University Campus, Pune 411 007, India
D. V. Lal
National Centre for Radio Astrophysics-TIFR, Pune University Campus, Pune 411 007, India
S. Roy
National Centre for Radio Astrophysics-TIFR, Pune University Campus, Pune 411 007, India

Abstract


The Giant Metrewave Radio Telescope (GMRT) is today a frontline international facility for low-frequency radio astronomy, that has produced several exciting and important new results in the 15 years that it has been operational. To keep the GMRT competitive in the global arena in the future, a major upgrade of the observatory is nearing completion that will increase its sensitivity by up to three times and make it a more powerful and versatile facility. We describe the main goals of this upgrade, highlight the technical features and challenges, outline the science potential and update the current status of this venture.

Keywords


Radio Telescope, Upgrade, Scientific Potential, Technical Challenges.

References





DOI: https://doi.org/10.18520/cs%2Fv113%2Fi04%2F707-714