Open Access
Subscription Access
Biofortification in Cereals:Progress and Prospects
Food security of the country has been improved due to green revolution and enhancement of cereal production. However, recent surveys showed 35.8% of children suffer from malnutrition in India. The Indian Council of Agricultural Research has taken lead for the biofortification of cereal crops based on earlier national and international research efforts, targeting the enhancement of nutrients in staple food crops. In this article, the significant progress made in rice, wheat, maize and millets for identification of genotypes, development, evaluation and release of the varieties with high nutrient contents and their bioavailability studies is discussed.
Keywords
Biofortification, Breeding, Bioavailability, Nutrients, Varieties.
User
Font Size
Information
- http://www.agricoop.nic.in/all-india-crop-situation
- www.ghi.ifpri.org
- wcd.nic.in/acts/rapid-survey-children-rsoc-2013-14
- Stein, A. J., Penelope, N., Meenakshi, J. V., Qaim, M., Sachdev, H. P. S. and Zulfiqar, A. B., Plant breeding to control zinc deficiency in India: How cost-effective is biofortification? Public Health Nutr., 2006, 10, 492–501.
- http://ffinetwork.org/regional_activity/india.php
- Bouis, H., Low, J., McEwan, M. and Tanumihardjo, S., Biofortification: evidence and lessons learned linking agriculture and nutrition. The Food and Agriculture Organization of the United Nations (FAO) and the World Health Organization (WHO). 2013.
- Bouis, H. E. and Welch, R. M., Biofortification-A sustainable agricultural strategy for reducing micronutrient malnutrition in the Global South. Crop Sci., 2010, 50, S 20–32.
- http://www.goldenrice.org/Content2-How/how4_regul.php9
- http://www.harvestplus.org/biofortification-nutrition-revolution-now
- Raboy, A., Approaches and challenges to engineering seed phytate and total phosphorus, Plant Sci., 2009, 177, 281–296.
- Eric, J. W. and Eddie, C. C., International rice baseline with deterministic and stochastic projections, 2012–2021. World Rice Outlook, 2012, pp. 1–81.
- Babu, R. V., Importance and advantages of rice biofortificaiton with iron and zinc. J. SAT Agric. Res., 2013, 11, 1–6.
- Pinson, S. R. M. et al., Worldwide genetic diversity for mineral element concentrations in rice grain. Crop Sci., 2015, 55, 294– 311.
- Swamy, B. P. M., Rahman, M. A., Inabangan-Asilo, M. A., Amparado, A., Manito, C., Chadha-Mohanty, P., Reinke, R. and Slamet-Loedin, I. H., Advances in breeding for high grain zinc in rice. Rice, 2016, 9. 49; doi:10.1186/s12284-016/s12284-016-01225.
- Masuda, H. et al., Iron biofortification in rice by the introduction of multiple genes involved in iron nutrition. Sci. Rep., 2012, 2, 1–7.
- Paul, S., Ali, N., Datta, S. K. and Datta, K., Development of an iron-enriched high- yielding Indica rice cultivar by introgression of a high-iron trait from transgenic iron-biofortified rice. Plant Foods Hum.Nutr., 2014, 69, 203–208.
- Juliano, B., Rice in Human Nutrition. FAO Food Nutr., Ser. No. 26. International Rice Research Institute: Manila, Philippines, 1993.
- Bao, J., Genes and QTLs for Rice Grain Quality Improvement. In Rice – Germplasm, Genetics and Improvement (ed. Wengui Yan), InTech, doi:10.5772/56621.
- Ortiz-Monasterio, I., Palacios-Rojas, N., Meng, E., Pixley, K., Trethowan, R. and Pena, R. J., Enhancing the mineral and vitamin content of wheat and maize through plant breeding. J. Cereal Sci., 2007, 46, 293–307.
- Chhuneja, P., Dhaliwal, H. S., Baines, N. S. and Singh, K., Aegilposkotschyi and Aegilopstauschii as sources of higher levels of grain iron and zinc. Plant Breed., 2006, 125, 529–531.
- Velu, G., Ortiz-Monasterio, I., Cakmak, I., Hao, Y. and Singh, R. P., Biofortification strategies to increase grain zinc and iron concentrations in wheat. J. Cereal Sci., 2014, 59, 365–372.
- Distelfeld, A., Cakmak, I., Peleg, Z., Ozturk, L., Yazici, A. M. and Budak, H., Multiple QTL-effects of wheat Gpc-B1 locus on grain protein and micronutrient concentrations. Physiol. Plant., 2007, 129, 635–643.
- Ram, S., Verma, A. and Sharma, S., Large variability exists in phytase levels among Indian wheat varieties and synthetic hexaploids. J. Cereal Sci., 2010, 52, 486–490.
- Yadav, O. P. et al., Genetic improvement of maize in India: retrospect and prospects. Agric. Res., 2015, 4, doi:10.1007/ s40003-015-0180-8.
- Pixley, K. V., Palacios, N. and Glahn, R. P., The usefulness of iron bioavailability as a target trait for breeding maize (Zea mays L.) with enhanced nutritional value. Field Crops Res., 2011, 123, 153–160.
- Pandey, N. et al., Microsatellite marker-based genetic diversity among quality protein maize (QPM) inbreds differing for kernel iron and zinc. Mol. Plant Breed., 2015, 6, doi:10.5376/ mpb.2015.06.0003.
- Sureshkumar, S. et al., Marker-assisted introgression of lpa-2 locus responsible for low-phytic acid trait into an elite tropical maize inbred. Plant Breed., 2014, 133, 566–578.
- Gupta, H. S., Hossain, F., Nepolean, T., Vignesh, M. and Mallikarjuna, M. G., Understanding genetic and molecular bases of Fe and Zn accumulation towards development of micronutrient enriched maize. In Nutrient Use Efficiency: From Basic to Advances (eds Rakshit et al.), 2015, pp. 255–282 (doi: 10.1007/978-81-322-2169-2-17).
- Danson, J., Mbogori, M., Kimani, M., Lagat. M., Kuria. A. and Diallo, A., Marker-assisted introgression of opaque2 gene into herbicide tolerant elite maize inbred lines. Afr. J. Biotechnol., 2006, 5, 2417–2422.
- Gupta, H. S. et al., Quality protein maize for nutritional security: rapid development of short duration hybrids through molecular marker-assisted breeding. Curr. Sci., 2009, 96, 230–237.
- Muthusamy, V., Hossain, F., Thirunavukkarasu, N., Saha, S. and Gupta, H. S., Allelic variations for lycopene-β-cyclase and carotene hydroxylase genes in maize inbreds and their utilization in -carotene enrichment programme. Cogent Food and Agriculture, 2015, 1, 1033141. doi:10.1080/23311932.2015.1033141.
- Parthasarathy Rao, P., Birthal, P. S., Reddy, B. V. S., Rai, K. N. and Ramesh, S., Diagnostics of sorghum and pearl millet grainsbased nutrition in India. Int. Sorghum Millets Newsl., 2006, 47, 93–96.
- Hariprasanna, K., Agte, V., Elangovan, M. and Patil, J. V., Genetic variability for grain iron and zinc content in cultivars, breeding lines and selected germplasm accessions of sorghum [Sorghum bicolor (L.) Moench]. Indian J. Genet., 2014, 74, 42–49.
- Ashok Kumar, A., Reddy, B. V. S. and Ramaiah, B., Biofortification for combating micronutrient malnutrition: Identification of commercial sorghum cultivars with high grain iron and zinc concentrations. Indian J. Dryland Agric. Res. Dev., 2013, 28, 95–100.
- Mishra, J. S., Hariprasanna, K., Rao, S. S. and Patil, J. V., Biofortification of post-rainy sorghum (Sorghum bicolor) with zinc and iron through fertilization strategy. Indian J. Agric. Sci., 2015, 85, 721–724.
- Hariprasanna, K., Agte, V., Elangovan, M., Gite, S. and Kishore, A., Anti-nutritional factors and antioxidant capacity in selected genotypes of sorghum [Sorghum bicolor (L.) Moench]. Int. J. Agric. Sci., 2015, 7, 620–625.
- Hemalatha, S., Platel, K. and Srinivasan, K., Zinc and iron contents and their bioaccessibility in cereals and pulses consumed in India. Food Chem., 2007, 102, 1328–1336.
- Rai, K. N., Govindaraj, M. and Rao, A. S., Genetic enhancement of grain iron and zinc content in pearl millet. Qual. Assur. Saf. Crop, 2012, 4, 119–125.
- Rai, K. N., Gupta, S. K., Sharma, R., Govindaraj, M., Rao, A. S., Shivade, H. and Bonamigo, L. A., Pearl millet breeding lines developed at ICRISAT: a reservoir of variability and useful source of non-target traits. SAT eJournal., 2014, 2, 1–13.
- Rai, K. N. et al., Dhanashakti: a high-iron pearl millet variety. Indian Fmg., 2014, 64, 32–34.
- Chandel, G., Meena, R. K., Dubey, M. and Kumar, M., Nutritional properties of minor millets: neglected cereals with potentials to combat malnutrition. Curr. Sci., 2014, 107, 1109–1101.
- Selvi, M. V., Nirmalakumari, A. and Senthil, N., Genetic diversity for zinc, calcium and iron content of selected little millet genotypes. J. Nutr. Food Sci., 2015, 5, 417; doi:10.4172/2155-9600. 1000417.
- Shibairo, S. I., Nyongesa, O., Onwonga, R. and Ambuko, J., Variation of nutritional and anti-nutritional contents in finger millet (Eleusinecoracana (L.) Gaertn) genotypes. J. Agric. Vet. Sci., 2014, 7, 06–12.
- National Research Council (NRC), Lost crops of Africa. Volume 1: Grains, Washington, DC, National Academy Press, 1996.
- Rao, P. U., Evaluation of protein quality of brown and white ragi (Eleusinecoracana) before and after malting. Food Chem., 1994, 51, 433–436.
- Rao, B. S. N. and Prabhavati, T., Tannin content of foods consumed in India and its influence on ionisable iron. J. Sci. Food Agric., 1982, 33, 89–96.
- Anon., 2010, Annual Report, AICSMIP, GKVK, Bangalore.
- Anon., 2014, Annual Report, AICSMIP, GKVK, Bangalore.
- Haas, J. D., Beard, J. L., Murray-Kolb, L. E., del Mundo, A. M., Felix, A. and Gregorio, G. B., Iron-biofortified rice improves the iron stores of nonanemic Filipino women. J. Nutr., 2005, 135, 2823–2830.
- De Moura, F. F. et al., Are biofortified staple food crops improving vitamin A and iron status in women and children? New evidence from efficacy trials. Adv. Nutr., 2014, 5, 568–570.
- Brnic, M., Wegmuller, R., Melse-Boonstra, A., Stomph, T., Zeder, C., Tay, F. M. and Hurrell, R. F., Zinc absorption by adults is similar from intrinsically labeled zinc-biofortified rice and from rice fortified with labelled zinc sulfate. J. Nutr., 2016, 146, 76–80.
- Chomba, E. et al., Zinc absorption from biofortified maize meets the requirements of young rural Zambian children. J. Nutr., 2015, 145, 514–519.
- Finkelstein, J. L. et al., A randomized trial of iron-biofortified pearl millet in school children in India. J. Nutr., 2015, 145, 1576– 1581.
- Kodkany, B. S., Bellad, R. M., Mahantshetti, N. S., Westcott, J. E., Krebs, N. F., Kemp, J. F. and Hambidge, K. M., Biofortification of pearl millet with iron and zinc in a randomized controlled trial increases absorption of these minerals above physiological requirements in young children. J. Nutr., 2013, 143, 1489–1493.
- Sreenivasulu, K., Raghu, P., Ravinder, P. and Nair, K. M., Effect of dietary ligands and food matrices on zinc uptake in Caco-2 cells: implications in assessing zinc bioavailability. J. Agric. Food Chem., 2008, 56, 10967–10972.
- Bejjani, S., Pullakhandam, R., Punjal, R. and Nair, K. M., Gastric digestion of pea ferritin and modulation of its iron bioavailability by ascorbic and phytic acids in Caco-2 cells. World J. Gastroenterol., 2007, 13, 2083–2088.
Abstract Views: 498
PDF Views: 155