The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


A study was conducted on the distribution of different forms of zinc (Zn) in soils (0–20 and 20–40 cm depths)in different blocks of Cooch Behar district, West Bengal,India. The soils of the selected areas were acidic in reaction (pH) at both the depths, ranging from 4.23 to 6.96 (0–20 cm) and 3.89 to 6.45 (20–40 cm) and having sandy to sandy loam texture. The different fractions of Zn varied among the soils of all locations. The order of different zinc fractions was: exchangeable zinc(Ex-Zn) < organic matter-bound zinc (OM-Zn) –1 at 0–20 cm depth and 0.92 kg ha–1 in the soils of Tufanganj-II at 20–40 cm depth respectively. Exch-Zn,OM-Zn, Mn-Ox-Zn and Am-Ox-Zn were positively correlated with CEC (r = 0.088, r = 0.105, r = 0.137, r = 0.103) at 0–20 cm depth, while at 20–40 cm depth, Exch-Zn, OM-Zn, Mn-Ox-Zn, Am-Ox Zn and Cry-Ox-Zn were positively correlated with CEC (r = 0.204, r = 0.168, r = 0.342, r = 0.123, r = 0.278). The influence of different soil properties on the distribution of Zn fractions in the soils was apparent from this study.

Keywords

Acid Soil, Cation Exchange Capacity, Terai Region, Zinc Fractions.
User
Notifications
Font Size