The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


Polyglycolide–caprolactone (PGCL)-based copolymer was synthesized from glycolide and caprolactone by ring opening polymerization in the presence of stannous octoate catalyst and diethylene glycol initiator. The effects of prepolymerization time, monomer ratio, monomer-to-catalyst and monomer-to-initiator ratios on per cent weight conversion were optimized. The end-capped copolymer was synthesized to make absorbable sutures having controlled bioabsorbability at different pH levels. It was observed that endcapped absorbable copolymer was more stable at pH 10.0 compared to uncapped absorbable material. End-capped copolymer also retained higher tensile strength compared to uncapped copolymer after 21 days. This phenomenon of controlled hydrolytic degradation of PGCL-based bioabsorbable polymer having terminal group end-capping can be attributed to less availability of hydrophilic end groups facilitating hydrolytic degradation of polymers.

Keywords

Biocompatibility, Bioabsorbable Copolymer, Hydrolytic Degradation, Polyglycolide–Caprolactone, Suture.
User
Notifications
Font Size