Open Access Open Access  Restricted Access Subscription Access

Assessment of Heavy Metal Toxicity in Four Species of Freshwater Ciliates (Spirotrichea:Ciliophora) from Delhi, India


Affiliations
1 Acharya Narendra Dev College, University of Delhi, Delhi 110 019, India
2 Maitreyi College, University of Delhi, Delhi 110 021, India
3 Department of Life Sciences, Natural History Museum, London, SW7 5BD, United Kingdom
 

In vitro laboratory experiments were conducted to determine the toxicity (per cent survival and LC50) of essential and non-essential heavy metals (cadmium, copper, nickel, lead and zinc) in four spirotrich ciliates: Euplotes sp., Notohymena sp., Pseudourostyla sp. and Tetmemena sp. isolated from three different freshwater ecosystems in the Delhi region, India. The toxicity of the heavy metals was found to vary among the different ciliates. Copper was most toxic (24 h-LC50 value ranged between 0.125 and 0.74 mg/l) and zinc was least toxic (24 h LC50 value ranged between 46.98 and 144.32 mg/l) to each of the ciliates. Of the four ciliates, Notohymena sp. had the highest tolerance limit to three heavy metals (Cu, Cd and Pb) out of the five tested. This study shows the high potentiality of using freshwater ciliates for monitoring the intensity and potency of ecological damage caused by heavy metals in aquatic ecosystems.

Keywords

Ciliates, Freshwater, Heavy Metals, Toxicity.
User
Notifications
Font Size

  • Malik, D., Singh, S., Thakur, J., Singh, R. K., Kaur, A. and Nijhawan, S., Heavy metal pollution of the Yamuna River: an introspection. Int. J. Curr. Microbiol. Appl. Sci., 2014, 3, 856–863.
  • Bhattacharya, A. K., Mandal, S. N. and Das, S. K., Heavy metals accumulation in water, sediment and tissues of different edible fishes in upper stretch of Gangetic West Bengal. Trends Appl. Sci. Res., 2008, 3, 61–68.
  • Karbassi, A. R., Bayati, I. and Moattar, F., Origin and chemical partitioning of heavy metals in riverbed sediments. Int. J. Environ. Sci. Technol., 2006, 3, 35–42.
  • Sirohi, S., Sirohi, S. P. S. and Tyagi, P. K., Impact of industrial effluents on the water quality of Kali River in different locations of Meerut, India. J. Eng. Technol. Res, 2014, 6, 43–47.
  • Cui, B., Zhang, Q., Zhang, K., Liu, X. and Zhang, H., Analyzing trophic transfer of heavy metals for food webs in the newly-formed wetlands of the Yellow River Delta, China. Environ. Pollut., 2011, 159, 1297–1306.
  • Ghorade, I. B., Lamture, S. V. and Patil, S. S., Assessment of heavy metal content in Godavari river water. Int. J. Res. Appl. Nat. Soc. Sci., 2014, 2, 23–26.
  • Lovley, D. R., Environmental Microbe–Metal Interactions, ASM Press, Washington, DC, USA, 2000.
  • Madoni, P., The acute toxicity of nickel to freshwater ciliates. Environ. Pollut., 2000, 109, 53–59.
  • Madoni, P. and Romeo, M. G., Acute toxicity of heavy metals towards freshwater ciliated protists. Environ. Pollut., 2006, 141, 1–7.
  • Wanick, R. C., da Paiva, T. S., de Carvalho, C. N. and da Silva-Neto, I. D., Acute toxicity of cadmium to freshwater ciliate Paramecium bursaria. Biociências (Porto Alegre), 2008, 16, 104–109.
  • Twagilimana, L., Bohatier, J., Groliere, C. A., Bonnemoy, F. and Sargos, D., A new low-cost microbiotest with the protozoan Spirostomum teres: culture conditions and assessment of sensitivity of the ciliate to 14 pure chemicals. Ecotoxicol. Environ. Saf., 1998, 41, 231–244.
  • Gutierrez, J. C., Amaro, F. and Martin-Gonzalez, A., From heavy metal-binder to biosensor: ciliate metallothionein discussed. Bioessays, 2009, 31, 805–816.
  • Rao, A. N. and Hussain, M. M., Ecophysiological and cytopathological impact of deflin insecticide (Bacillus thuringiensis) to an unicellular ciliate protozoan, Euplotes patella. Res. J. Recent Sci., 2012, 1, 64–67.
  • Turkewitz, A. P., Orias, E. and Kapler, G., Functional genomics: the coming of age for Tetrahymena thermophila. Trends Genet., 2002, 18, 35–40.
  • Gilron, D. L. and Lynn, D. H., Ciliated protozoa as test organisms in toxicity assessments. In Microscale Testing in Aquatic Toxicology: Advances, Techniques and Practice (eds Wells, P. G. et al.), CRC Press, Boca Raton, FL, USA, 1998, pp. 323–336.
  • Gutierrez, J. C., Martín-Gonzalez, A., Diaz, S. and Ortega, R., Ciliates as a potential source of cellular and molecular biomarkers/biosensors for heavy metal pollution. Eur. J. Protistol., 2003, 39, 461–467.
  • Payne, R. J., Seven reasons why protists make useful bioindicators. Acta Protozool., 2013, 52, 105–113.
  • Berger, H., Monograph of the oxytrichidae (Ciliophora, Hypotrichia). In Monographie Biologicae, Kluwer, Dordrecht, The Netherlands, 1999.
  • Chapman-Andresen, C., Pinocytosis of inorganic salts by Amoeba proteus (Chaos diffluens). C. R. Trav. Lab. Carlsberg Chim., 1958, 31, 77–92.
  • Dias, N. and Lima, N., A comparative study using a fluorescence-based and a direct count assay to determine cytotoxicity in Tetrahymena pyriformis. Res Microbiol., 2002, 153, 313–322.
  • Diaz, S., Martin-Gonzalez, A. and Gutierrez, C. J., Evaluation of heavy metal acute toxicity and bioaccumulation in soil ciliated protozoa. Environ. Int., 2006, 32, 711–717.
  • Finney, D. J., Probit Analysis, Cambridge University Press, Cambridge, 1971, 3rd edn.
  • Sokal, R. R. and Rohlf, F. J., Biometry: the Principles and Practice of Statistics in Biological Research, W.H. Freeman and Company, New York, USA, 1995, 3rd edn.
  • Dunnett, C. W., A multiple comparison procedure for comparing several treatments with a control. J. Am. Stat. Assoc., 1955, 50, 1096–1121.
  • Nilsson, J. R., Phagotrophy in Tetrahymena. In Biochemistry and Physiology of Protozoa (eds Levandowsky, M. and Hunter, S. H.), Academic Press, New York, 1979, pp. 339–379.
  • Nilsson, J. R., Effects of copper on phagocytosis in Tetrahymena. Protoplasma, 1981, 109, 359–370.
  • Nilsson, J. R., How cytotoxic is zinc? A study on effects of zinc on cell proliferation, endocytosis and fine structure of the ciliate Tetrahymena. Acta Protozool., 2003, 42, 19–29.
  • Chasapis, C. T., Andreini, C., Georgiopolou, A. K., Stefanidou, M. E. and Vlamis-Gardikas, A., Identification of the zinc, copper and cadmium metalloproteome of the protozoon Tetrahymena thermophila by systematic bioinformatics. Arch. Microbiol., 2017, doi:10.1007/s00203-017-1385-y.
  • Dunlop, S. and Chapman, G., Detoxification of zinc and cadmium by freshwater protozoan Tetrahymena pyriformis. II. Growth experiments and ultrastructural studies on sequestration of heavy metals. Environ. Res., 1981, 24, 264–274.
  • Krawczynska, W., Pivovarova, N. N. and Sobota, A., Effects of cadmium on growth, ultrastructure and content of chemical elements in Tetrahymena pyriformis and Acanthamoeba castellanii. Acta Protozool., 1989, 28, 245–252.
  • Makhija, S., Gupta, R., Toteja, R., Abraham, J. S. and Sripoorna, S., Cadmium induced ultrastructural changes in the ciliate, Stylonychia mytilus (Ciliophora, Hypotrichida). J. Cell Tissue Res., 2015, 15, 5151–5157.
  • Martin-Gonzalez, A., Diaz, S., Borniquel, S., Gallego, A. and Gutierrez, J. C., Cytotoxicity and bioaccumulation of heavy metals by ciliated protozoa isolated from urban wastewater treatment plants. Res. Microbiol., 2006, 157, 108–118.
  • Boldrin, F., Santovito, G., Irato, P. and Piccinni, E., Metal interaction and regulation of Tetrahymena pigmentosa metallothionein genes. Protist, 2002, 153, 283–291.
  • Fu, C. and Miao, W., Cloning and characterization of a new multi-stress inducible metallothionein gene in Tetrahymena pyriformis. Protist, 2006, 157, 193–203.
  • Guirola, M., Perez-Rafael, S., Capdevila, M., Palacios, O. and Atrian, S., Metal dealing at the origin of the chordata phylum: the metallothionein system and metal overload response in Amphioxus. PLoS ONE, 2012, 7, e43299.
  • Gutierrez, J. C., Amaro, F. and Martin-Gonzalez, A., Heavy metal whole biosensors using eukaryotic microorganisms: an updated critical review. Front. Microbiol., 2015, 6, 1–8.
  • Torreggiani, A., Chatgilialoglu, C., Ferreri, C., Melchiorre, M., Atrian, S. and Capdevila, M., Non-enzymatic modifications in metallothioneins connected to lipid membrane damages: structural and biomimetic studies under reductive radical stress. J. Proteomics, 2013, 92, 204–215.
  • Klaassen, C. D., Liu, J. and Choudhuri, S., Metallothionein: an intracellular protein to protect against cadmium toxicity. Annu. Rev. Pharmacol. Toxicol., 1999, 39, 267–294.
  • Brady, D., Letebele, B., Duncan, J. R. and Rose, P. D., Bioaccumulation of metals by Scenedesmus, Selenastrum and Chlorella algae. Water SA, 1994, 20, 213–218.
  • Vymazal, J., Toxicity and accumulation of cadmium with respect to algae and cyanobacteria: a review. Environ. Toxicol., 1987, 2, 387–415.
  • Madoni, P., Davoli, D. and Gorbi, G., Acute toxicity of lead, chromium, and other heavy metals to ciliates from activated sludge plants. Bull. Environ. Contam. Toxicol., 1994, 53, 420–425.
  • Martin-Gonzalez, A., Benítez, L., Soto, T., Rodriguez de Lecea, J. and Gutierrez, J. C., A rapid bioassay to detect mycotoxins using a melanin precursor overproducer mutant of the ciliate Tetrahymena thermophila. Cell Biol. Int., 1997, 21, 213–221.
  • Nicolau, A., Martins, M. J., Mota, M. and Lima, N., Effect of copper in the protistan community of activated sludge. Chemosphere, 2005, 58, 605–614.
  • Amin, N. M., Techniques for assessment of heavy metal toxicity using Acanthamoeba sp., a small, naked and free-living amoeba. In The Functioning of Ecosystems (eds Ali, M.), InTech, 2012, pp. 199–212.
  • Madoni, P., Esteban, G. and Gorbi, G., Acute toxicity of cadmium, copper, mercury, and zinc to ciliates from activated sludge plants. Bull. Environ. Contam. Toxicol., 1992, 49, 900–905.
  • Rico, D., Martin-Gonzalez, A., Diaz, S., de Lucas, P. and Gutierrez, J. C., Heavy metals generate reactive oxygen species in terrestrial and aquatic ciliated protozoa. Comp. Biochem. Physiol – Part C, 2009, 149, 90–96.
  • Nicolau, A., Mota, M. and Lima, N., Physiological responses of Tetrahymena pyriformis to copper, zinc, cycloheximide and Triton X-100. FEMS Microbiol. Ecol., 1999, 30, 209–216.
  • Chaudhry, R. and Shakoori, A. R., Characterization of copper resistant ciliates: potential candidates for consortia of organisms used in bioremediation of wastewater. Afr. J. Biotechnol., 2011, 10, 9101–9113.
  • Gallego, A., Martín-González, A., Ortega, R. and Gutiérrez, J. C., Flow cytometry assessment of cytotoxicity and reactive oxygen species generation by single and binary mixtures of cadmium, zinc and copper on populations of the ciliated protozoan Tetrahymena thermophila. Chemosphere, 2007, 68, 647–661.
  • Parker, J. G., Toxic effects of heavy metals upon cultures of Uronema marinum (Ciliophora: Uronematidae). Mar. Biol., 1979, 54, 17–24.
  • Kim, S. H., Jung, M. Y. and Lee, Y. M., Effect of heavy metals on the antioxidant enzymes in the marine ciliate Euplotes crassus. Toxicol. Environ. Health Sci., 2011, 3, 213–219.
  • Coppellotti, O., Sensitivity to copper in a ciliate as a possible component of biological monitoring in the Lagoon of Venice. Arch. Environ. Contam. Toxicol., 1998, 35, 417–425.

Abstract Views: 367

PDF Views: 103




  • Assessment of Heavy Metal Toxicity in Four Species of Freshwater Ciliates (Spirotrichea:Ciliophora) from Delhi, India

Abstract Views: 367  |  PDF Views: 103

Authors

Jeeva Susan Abraham
Acharya Narendra Dev College, University of Delhi, Delhi 110 019, India
S. Sripoorna
Acharya Narendra Dev College, University of Delhi, Delhi 110 019, India
Ashish Choudhary
Acharya Narendra Dev College, University of Delhi, Delhi 110 019, India
Ravi Toteja
Acharya Narendra Dev College, University of Delhi, Delhi 110 019, India
Renu Gupta
Maitreyi College, University of Delhi, Delhi 110 021, India
Seema Makhija
Acharya Narendra Dev College, University of Delhi, Delhi 110 019, India
Alan Warren
Department of Life Sciences, Natural History Museum, London, SW7 5BD, United Kingdom

Abstract


In vitro laboratory experiments were conducted to determine the toxicity (per cent survival and LC50) of essential and non-essential heavy metals (cadmium, copper, nickel, lead and zinc) in four spirotrich ciliates: Euplotes sp., Notohymena sp., Pseudourostyla sp. and Tetmemena sp. isolated from three different freshwater ecosystems in the Delhi region, India. The toxicity of the heavy metals was found to vary among the different ciliates. Copper was most toxic (24 h-LC50 value ranged between 0.125 and 0.74 mg/l) and zinc was least toxic (24 h LC50 value ranged between 46.98 and 144.32 mg/l) to each of the ciliates. Of the four ciliates, Notohymena sp. had the highest tolerance limit to three heavy metals (Cu, Cd and Pb) out of the five tested. This study shows the high potentiality of using freshwater ciliates for monitoring the intensity and potency of ecological damage caused by heavy metals in aquatic ecosystems.

Keywords


Ciliates, Freshwater, Heavy Metals, Toxicity.

References





DOI: https://doi.org/10.18520/cs%2Fv113%2Fi11%2F2141-2150