Renewed interest in re-usable launch vehicles has led to the evolution of technology demonstration concepts, where the prime objective is to demonstrate new technologies at reduced cost and shorter turnaround time. This article presents details of both ascent and descent mission design of a low-cost Reusable Launch Vehicle Technology Demonstration (RLV-TD) programme. The technology demonstrator vehicle is boosted to hypersonic Mach number using a solid booster. During ascent phase, the vehicle was flown in a gravity turn trajectory to minimize structural loads on it. In the descent phase, an optimum angle of attack profile as a function of Mach number was computed to limit dynamic pressure, load factor and achieve vehicle trim with minimum control surface deflection. The mission design parameters were evaluated using Monte Carlo analysis utilizing six degrees of freedom simulations. Comparison of actual flight performance with pre-flight prediction is also made this article. Flight performance exhibits close match with the pre-flight predictions.
Keywords
Flight Performance, Reusable Launch Vehicles, Mission Design, Pre-Flight Predictions.
User
Font Size
Information