Open Access Open Access  Restricted Access Subscription Access

Arabidopsis Natural Variants and the Indian Scenario


Affiliations
1 Genetics and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow 226 010, India
 

Arabidopsis thaliana is the model species of choice in plant science. It is the first plant species whose genome was sequenced in 2001. One of the important factors that has largely contributed in the growth of Arabidopsis as a model plant is existence of its natural variants across the globe and its availability from public sources. These natural variants have helped in discovering a large number of quantitative trait loci associated with specific traits and other functional alleles. The 1001 genome consortium was launched in 2009 to unearth the genetic and epigenetic variations in natural accessions spread across the globe. However, there was no report of detailed work on Indian populations of Arabidopsis before 2015. The Indian populations of Arabidopsis thaliana are unique and may provide valuable information on its evolution and adaptation under different climatic conditions. Since major conclusions on the origin and evolution of Arabidopsis thaliana from different studies were drawn without including the Indian populations, inclusion of these populations in global data analysis may help unearth new findings.
User
Notifications
Font Size

  • Koornneef, M. and Meinke, D., Plant J., 2010, 61(6), 909–921.
  • Meinke, D. W., Cherry, J. M., Dean, C., Rounsley, S. D. and Koornneef, M., Science, 1998, 282(662), 679–682.
  • Meyerowitz, E. M., Plant Physiol., 2001, 125(1), 15–19.
  • Provart, N. J. et al., New Phytol., 2016, 209(3), 921–944.
  • Beck, J. B., Schmuths, H. and Schaal, B. A., Mol. Ecol., 2008, 17(3), 902–915.
  • Nordborg, M. et al., PLoS Biol., 2005, 3, e196.
  • Ostrowski, M.-F. et al., Mol. Ecol., 2006, 15, 1507–1517.
  • Schmid, K. J., Törjék, O., Meyer, R., Schmuths, H., Hoffmann, M. H. and Altmann, T., Theor. Appl. Genet., 2006, 112, 1104–1114.
  • Sharbel, T. F., Haubold, B. and MitchellOlds, T., Mol. Ecol., 2000, 9(12), 2109–2118.
  • Bakker, E. G., Stahl, E. A., Toomajian, C., Nordborg, M., Kreitman, M. and Bergelson, J., Mol. Ecol., 2006, 15(5), 1405–1418.
  • Stenoien, H. K., Fenster, C. B., Tonteri, A. and Savolainen, O., Mol. Ecol., 2005, 14(1), 137–148.
  • Le Corre, V., Mol. Ecol., 2005, 14(13), 4181–4192.
  • He, F., Kang, D., Ren, Y., Qu, L.-J., Zhen, Y. and Gu, H., Heredity, 2007, 99, 423–431.
  • Clark, R. M. et al., Science, 2007, 317(5836), 338–342.
  • Hancock, A. M. et al., Science, 2011, 334(6052), 83–86.
  • Horton, M. W. et al., Nature Genet., 2012, 44(2), 212–216.
  • Kim, S. et al., Nature Genet., 2007, 39(9), 1151–1155.
  • Fournier-Level, A., Korte, A., Cooper, M. D., Nordborg, M., Schmitt, J. and Wilczek, A. M., Science, 2011, 334(6052), 86–89.
  • Alonso-Blanco, C., Aarts, M. G. M., Bentsink, L., Keurentjes, J. J. B., Reymond, M., Vreugdenhil, D. and Koornneef, M., Plant Cell, 2009, 21, 1877–1896.
  • Keurentjes, J. J. B. W. G., van Eeuwijk, F., Nordborg, M. and Koornneef, M., Plant Genet. Resour., 2011, 9, 185–188.
  • Weinig, C. et al., Genetics, 2002, 162(4), 1875–1884.
  • Johanson, U., West, J., Lister, C., Michaels, S., Amasino, R. and Dean, C., Science, 2000, 290(5490), 344–347.
  • Long, Q. et al., Nature Genet., 2013, 45(8), 884–890.
  • Cao, J. et al., Nature Genet., 2011, 43(10), 956–963.
  • Gan, X. et al., Nature, 2011, 477(7365), 419–423.
  • Schmitz, R. J. et al., Nature, 2013, 495(7440), 193–198.
  • Chao, D.-Y. et al., PLoS Genet., 2012, 8, e1002923.
  • Karasov, T. L. et al., Nature, 2014, 512, 436–440.
  • Todesco, M. et al., Nature, 2010, 465(7298), 632–636.
  • Genomes Consortium, Cell, 2016, 166(2), 481–491.
  • Tyagi, A. et al., AoB Plants, 2015, 8 (plv145; doi:10.1093/aobpla/plv145).
  • Singh, A., Tyagi, A., Tripathi, A. M., Gokhale, S. M., Singh, N. and Roy, S., Curr. Sci., 2015, 108(12), 2213–2222.
  • Vander Zwan, C. B. S. and Campanella, J. J., Syst. Bot., 2000, 25, 47–59.
  • Zhang, Y., Wu, Y. Liu, Y. and Han, B., Plant Physiol., 2005, 138, 935–948.
  • Tyagi, A., Yadav, A., Tripathi, A. M. and Roy, S., Sci Rep., 2016, 6, 26160.
  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S., Mol. Biol. Evol., 2011, 28(10), 2731–2739.

Abstract Views: 658

PDF Views: 141




  • Arabidopsis Natural Variants and the Indian Scenario

Abstract Views: 658  |  PDF Views: 141

Authors

Sribash Roy
Genetics and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow 226 010, India

Abstract


Arabidopsis thaliana is the model species of choice in plant science. It is the first plant species whose genome was sequenced in 2001. One of the important factors that has largely contributed in the growth of Arabidopsis as a model plant is existence of its natural variants across the globe and its availability from public sources. These natural variants have helped in discovering a large number of quantitative trait loci associated with specific traits and other functional alleles. The 1001 genome consortium was launched in 2009 to unearth the genetic and epigenetic variations in natural accessions spread across the globe. However, there was no report of detailed work on Indian populations of Arabidopsis before 2015. The Indian populations of Arabidopsis thaliana are unique and may provide valuable information on its evolution and adaptation under different climatic conditions. Since major conclusions on the origin and evolution of Arabidopsis thaliana from different studies were drawn without including the Indian populations, inclusion of these populations in global data analysis may help unearth new findings.

References





DOI: https://doi.org/10.18520/cs%2Fv114%2Fi02%2F263-265