Open Access Open Access  Restricted Access Subscription Access

Seasonal Surface Chlorophyll a Variability in the Seychelles–Chagos Thermocline Ridge


Affiliations
1 National Institute of Ocean Technology, Chennai 600 100, India
2 National Centre for Antarctic and Ocean Research, Goa 403 804, India
 

Seychelles–Chagos Thermocline Ridge (SCTR, 5°–10°S, 50°–75°E) in the southwestern tropical Indian Ocean is a unique area that experiences year-round upwelling. This is a response to the upward Ekman pumping prevalent in the region. Satellite data, model data and objectively analysed Argo temperature/salinity data have been used to study the seasonal surface chlorophyll a (chl a) variability in SCTR. Variability of surface chl a concentration in SCTR showed a weak semiannual signature. The western part of SCTR (WSCTR, 50°–62°E) is characterized by higher chl a concentration than the eastern part (ESCTR, 63°–75°E). Average chl a concentration in WSCTR/ESCTR showed a primary peak in July– August (~0.26/~0.16 mg/m3) and a secondary peak in January (~0.14/~0.12 mg/m3). Minimum chl a concentration (~0.12/~0.1 mg/m3) was observed during March– April and December–January. The high amplitude of chl a variability observed during July–August is associated with weak stratification and deep mixed layer depth (MLD). Deep MLD reaching to nutrient-rich thermocline entrains nutrients to the surface and thereby increases the surface chl a concentration. However, the low surface chl a concentration is a result of shallow MLD in the region. The deep MLD (30–40 m) observed during June–October is dominated by wind mixing and supported by buoyancy mixing. Shallow MLD (<30 m) observed during rest of the year is due to weak wind mixing and high surface buoyancy. The high surface buoyancy is a manifestation of ocean surface warming and presence of low saline surface waters in the SCTR region.

Keywords

Buoyancy Flux, Chlorophyll a, Climatology, Wind Mixing.
User
Notifications
Font Size


  • Seasonal Surface Chlorophyll a Variability in the Seychelles–Chagos Thermocline Ridge

Abstract Views: 415  |  PDF Views: 164

Authors

Jenson V. George
National Institute of Ocean Technology, Chennai 600 100, India
M. Nuncio
National Centre for Antarctic and Ocean Research, Goa 403 804, India
N. Anilkumar
National Centre for Antarctic and Ocean Research, Goa 403 804, India
Racheal Chacko
National Centre for Antarctic and Ocean Research, Goa 403 804, India
D. Rajashekhar
National Institute of Ocean Technology, Chennai 600 100, India

Abstract


Seychelles–Chagos Thermocline Ridge (SCTR, 5°–10°S, 50°–75°E) in the southwestern tropical Indian Ocean is a unique area that experiences year-round upwelling. This is a response to the upward Ekman pumping prevalent in the region. Satellite data, model data and objectively analysed Argo temperature/salinity data have been used to study the seasonal surface chlorophyll a (chl a) variability in SCTR. Variability of surface chl a concentration in SCTR showed a weak semiannual signature. The western part of SCTR (WSCTR, 50°–62°E) is characterized by higher chl a concentration than the eastern part (ESCTR, 63°–75°E). Average chl a concentration in WSCTR/ESCTR showed a primary peak in July– August (~0.26/~0.16 mg/m3) and a secondary peak in January (~0.14/~0.12 mg/m3). Minimum chl a concentration (~0.12/~0.1 mg/m3) was observed during March– April and December–January. The high amplitude of chl a variability observed during July–August is associated with weak stratification and deep mixed layer depth (MLD). Deep MLD reaching to nutrient-rich thermocline entrains nutrients to the surface and thereby increases the surface chl a concentration. However, the low surface chl a concentration is a result of shallow MLD in the region. The deep MLD (30–40 m) observed during June–October is dominated by wind mixing and supported by buoyancy mixing. Shallow MLD (<30 m) observed during rest of the year is due to weak wind mixing and high surface buoyancy. The high surface buoyancy is a manifestation of ocean surface warming and presence of low saline surface waters in the SCTR region.

Keywords


Buoyancy Flux, Chlorophyll a, Climatology, Wind Mixing.

References





DOI: https://doi.org/10.18520/cs%2Fv114%2Fi04%2F868-878