Open Access Open Access  Restricted Access Subscription Access

Studies of Forest Fire Induced Changes in Atmosphere over Uttarakhand, India, Using Space Based Observations and Model Simulations


Affiliations
1 National Remote Sensing Centre, Hyderabad 500 037, India
 

The northern Indian state of Uttarakhand had witnessed an episode of intense forest fire during April–May 2016. The present study analyses the changes in trace gas and other atmospheric constituents induced by the forest fire using satellite data. The study reveals elevated levels of CO, NO2, ozone and aerosol optical depth (AOD) over the affected region. Higher levels of CO are observed at altitudes of 2–3 km. The column amount of CO has almost doubled from mean background values, whereas NO2 has increased by almost three times to values normally seen over highly polluted cities. Increase in ozone is only moderate and AOD has risen towards the end of the main phase of the fire episode. Weather research and forecasting simulations of wind and planetary boundary layer height are also performed and the results discussed. The study shows the potential of Earth-Observation Satellites to track and monitor such environmental impacts effectively.

Keywords

Aerosol Optical Depth, Forest Fire, Trace Gas.
User
Notifications
Font Size

  • Lohmann, U. and Feichter, J., Global indirect aerosol effects: a review. Atmos. Chem. Phys., 2005, 5, 715–737.
  • Seiler, W. and Crutzen, P. J., Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Clim. Change, 1980, 2, 207–247.
  • Crutzen, P. J. and Andreae, M. O., Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles. Science, 1990, 250(4988), 1669–1678.
  • Langmann, B. and Heil, A., Release and dispersion of vegetation and peat fire emissions in the atmosphere over Indonesia 1997/1998. Atmos. Chem. Phys., 2004 4, 2145–2160.
  • Andreae, M. O. and Merlet, P., Emission of trace gases and aerosols from biomass burning. Global Biogeochem. Cycles, 2001, 15, 955–966.
  • Reid, J. S., Koppmann, R., Eck, T. F. and Eleuterio, D. P., A review of biomass burning emissions part II: intensive physical properties of biomass burning particles. Atmos. Chem. Phys., 2005, 5, 799–825.
  • Hobbs, P. V., Reid, J. S., Kotchenruther, R. A., Ferek, R. J. and Weiss, R., Direct radiative forcing by smoke from biomass burning. Science, 1997, 275, 1776–1778.
  • Podgorny, I. A., Li, F. and Ramanathan, V., Large aerosol radiative forcing due to the 1997 Indonesian forest fire. Geophys. Res. Lett., 2003, 30; doi:10.1029/2002GL015979.
  • IPCC (Intergovernmental Panel on Climate Change), The Physical Science Basis, 2007; http://www.ipcc.ch/ipccreports/ar4-wg1.htm
  • Koren, I. L., Kaufman, Y. J., Remer, L. A. and Martins, J. V., Measurement of the effect of Amazon smoke on inhibition of cloud formation. Science, 2004, 303, 1342–1345.
  • Feingold, G., Jiang, H. and Harrington, J. Y., On smoke suppression of clouds in Amazonia. Geophys. Res. Lett., 2005, 32, L02804; doi:10.1029/2004GL021369.
  • Andreae, M. O. et al., Smoking rain clouds over the Amazon. Science, 2004, 303, 1337–1342.
  • Kaufman, Y. J. et al., Potential global fire monitoring from EOS‐MODIS. J. Geophys. Res. Atmos., 1998, 103(D24), 32215–32238.
  • Aumann, H. H. et al., AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems. geoscience and remote sensing. IEEE Trans., 2003, 41(2), 253–264.
  • McMillan, W. W. et al., Daily global maps of carbon monoxide from NASA’s Atmospheric Infrared Sounder. Geophys. Res. Lett., 2005, 32; doi: 10.1029/2004GL021821. ISSN: 0094-8276.
  • Schoeberl, M. R. et al., The EOS aura mission. EOS, Trans., Am. Geophys. Union, 2004, 85(14), 133–139.
  • Streets, D. G. et al., Emissions estimation from satellite retrievals: a review of current capability. Atmosph. Environ., 2013, 77, 1011–1042; ISSN 1352-2310, http://dx.doi.org/10.1016/j.atmosenv.2013.05.051.
  • Pfister, G. et al., Quantifying CO emissions from the 2004 Alaskan wildfires using MOPITT CO data. Geophys. Res. Lett., 2005, 32, L11809; doi:10.1029/2005GL022995.
  • Kaufman, Y. J. et al., Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect. J. Geophys. Res., 1997, 102(D14), 16815–16830; doi:10.1029/97JD01496.
  • Skamarock, W. et al., A description of the advanced research WRF version 3. NCAR technical note NCAR/TN-475+STR, 2008; doi:10.5065/D68S4MVH.
  • Kharol, S. K., Badarinath, K. V. S. and Roy, P. S., Studies on emissions from forest fires using multi-satellite datasets over North East region of India. Int. Arch. Photogrammetry, Remote Sensing and Spatial Inf. Sci., 2008, XXXVII (Part B8); http://www.isprs.org/proceedings/XXXVII/congress/8_pdf/3_WG-VIII-3/02.pdf
  • Akagi, S. K. et al., Emission factors for open and domestic biomass burning for use in atmospheric models. Atmos. Chem. Phys., 2011, 11, 4039–4072; doi:10.5194/acp-11-4039-2011.
  • Hu Hai-Qing, Wei Shu-Jing and Sun Long, Estimation of carbon emissions due to forest fire in Daxing’an Mountains from 1965 to 2010; Chinese J. Plant Ecol., doi:10.3724/SP.J.1258.2012.00629.
  • French, N. H. F., Kasischke, E. S. and Williams, D. G., Variability in the emission of carbon-based trace gases from wildfire in the Alaskan boreal forest. J. Geophys. Res., 2002, 107, 8151; doi:10.1029/2001JD000480.

Abstract Views: 373

PDF Views: 147




  • Studies of Forest Fire Induced Changes in Atmosphere over Uttarakhand, India, Using Space Based Observations and Model Simulations

Abstract Views: 373  |  PDF Views: 147

Authors

M. K. Madhav Haridas
National Remote Sensing Centre, Hyderabad 500 037, India
P. V. N. Rao
National Remote Sensing Centre, Hyderabad 500 037, India
K. Sreenivas Rao
National Remote Sensing Centre, Hyderabad 500 037, India
Prijith Sudhakar
National Remote Sensing Centre, Hyderabad 500 037, India

Abstract


The northern Indian state of Uttarakhand had witnessed an episode of intense forest fire during April–May 2016. The present study analyses the changes in trace gas and other atmospheric constituents induced by the forest fire using satellite data. The study reveals elevated levels of CO, NO2, ozone and aerosol optical depth (AOD) over the affected region. Higher levels of CO are observed at altitudes of 2–3 km. The column amount of CO has almost doubled from mean background values, whereas NO2 has increased by almost three times to values normally seen over highly polluted cities. Increase in ozone is only moderate and AOD has risen towards the end of the main phase of the fire episode. Weather research and forecasting simulations of wind and planetary boundary layer height are also performed and the results discussed. The study shows the potential of Earth-Observation Satellites to track and monitor such environmental impacts effectively.

Keywords


Aerosol Optical Depth, Forest Fire, Trace Gas.

References





DOI: https://doi.org/10.18520/cs%2Fv114%2Fi12%2F2504-2512