The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


A hybrid ensemble learning approach is proposed for financial time series forecasting combining AdaBoost algorithm and long short-term memory (LSTM) network. First, LSTM predictor is trained using the training samples obtained by AdaBoost algorithm. Then, AdaBoost algorithm is applied to obtain the ensemble weights of each LSTM predictor. The forecasting results of all the LSTM predictors are combined using ensemble weights to generate our final results. Four major daily exchange rate datasets and two stock market index datasets are selected for model evaluation and model comparison. The empirical study demonstrates that the proposed AdaBoost-LSTM ensemble learning approach outperform other single forecasting models and other ensemble learning approach in terms of both level forecasting accuracy and directional forecasting accuracy. This suggests that the AdaBoost-LSTM ensemble learning approach is a highly promising for financial time rates forecasting.

Keywords

Adaboost Algorithm, Ensemble Learning, Financial Time Series Forecasting, Long Short-Term Memory Network.
User
Notifications
Font Size