Open Access Open Access  Restricted Access Subscription Access

Quantum Dots for Solar Energy Harvesting


Affiliations
1 Department of ECE, School of Technology, Assam Don Bosco University, Azara, Guwahati - 781 017, India
 

Owing to their versatile optical and electrical properties, semiconductor quantum dots are attracting attention as a material of choice for solar energy conversion. The quantum dot sensitized solar cells are considered as one of the most promising next-generation solar cells as they have the advantage of tunable band-gap energy and multiple exciton generation. We present here a study on quantum dot sensitized solar cells considering their construction and working, impact of incorporation of nanomaterials in solar cells and various structures for improving the performance of solar cells.

Keywords

Light Harvesting, Multiple Exciton Generation, Quantum Dots, Solar Cells, Tunable Band Gap.
User
Notifications
Font Size

  • US Energy Information Administration, International Energy Outlook, 2010.
  • Zhang, Q. and Cao, G., Nanostructured photoelectrodes for dye-sensitized solar cells. Nano Today, 2011, 6, 91–109.
  • Green, M. A. et al., Solar cell efficiency tables (version 37), Prog. Photovolt.: Res. Appl., 2010, 19, 84–92.
  • Bandara, J. and Weerasinghe, H. C., Efficient solid-state dye sensitized solar cells fabricated on a compact TiO2 barrier layer preventing short-circuit current. Sri Lankan J. Phys., 2004, 5, 27– 35.
  • Gratzel, M., Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J. Photochem. Photobiol. A: Chem., 2004, 164, 3–14.
  • Halim, M. A., Harnessing sun’s energy with quantum dots based next generation solar cell. Nanomaterials, 2012, 3, 22–47.
  • Chakrapani, V., Baker, D. and Kamat, P. V., Understanding the role of the sulfide redox couple (S2–//S2-n) in quantum dotsensitized solar cells. J. Am. Chem. Soc., 2011, 133, 9607– 9615.
  • Ellis, A. B., Steven, W. K. and Mark, S. W., Optical to electrical energy conversion. Characterization of cadmium sulfide and cadmium selenide based photoelectrochemical cells. J. Am. Chem. Soc., 1976, 98, 6855–6866.
  • Yu, J. et al., Quantum dot sensitized solar cells with efficiency over 12% based on tetraethyl orthosilicate additive in polysulfide electrolyte. J. Mater. Chem. A, 2017, 5, 14124–14133.
  • Meng, K., Surolia, P. K., Byrne, O. and Thampi, K. R., Efficient CdS quantum dot sensitized solar cells made using novel Cu2S counter electrode. J. Power Sour., 2014, 248, 218–223.
  • Meng, K., Surolia, P. K., Byrne, O. and Thampi, K. R., Quantum dot and quantum dot–dye co-sensitized solar cells containing organic thiolate–disulfide redox electrolyte. J. Power Sour., 2015, 275, 681–687.
  • Tian, J. and Cao, G., Semiconductor quantum dot-sensitized solar cells. Nano Rev., 2013, 4, 1–8.
  • Jun, H. K., Careem, M. A. and Arof, A. K., Efficiency improvement of CdS and CdSe quantum dot-sensitized solar cells by TiO2 surface treatment. J. Renew. Sustain. Energ., 2014, 6, 023107.
  • Cheng, D.-C. et al., Improving Si solar cell performance using Mn : ZnSe quantum dot-doped PLMA thin film. Nanoscale Res. Lett., 2013, 8, 291.
  • Sfyri, G. et al., Composite ZnSe–CdSe quantum dot sensitizers of solid-state solar cells and the beneficial effect of added Na2S. J. Phys. Chem. C, 2014, 118, 16547–16551.
  • Singh, R. et al., Synthesis of lead sulphide nanoparticles for electrode application of dye sensitized solar cells. Nanosci. Nanotechnol. Lett., 2014, 6, 31–36.
  • Jean, J. et al., ZnO nanowire arrays for enhanced photocurrent in PbS quantum dot solar cells. Adv. Mater., 2013, 25, 2790–2796.
  • Hu, H. et al., Photodeposition of Ag2S on TiO2 nanorod arrays for quantum dot-sensitized solar cells. Nanoscale Res. Lett., 2013, 8, 1–7.
  • Hwang, I. et al., Improvement of photocurrent generation of Ag2S sensitized solar cell through co-sensitization with CdS. Appl. Phys. Lett., 2013, 103, 023902–023902.
  • Jara, D. H. et al., Size-dependent photovoltaic performance of CuInS2 quantum dot-sensitized solar cells. Chem. Mater., 2014, 26, 7221–7228.
  • Li, T., Lee, Y. L. and Teng, H., High-performance quantum dotsensitized solar cells based on sensitization with CuInS2 quantum dots/CdS heterostructure. Energ. Environ. Sci., 2012, 5, 5315–5324.
  • Wang, J. et al., Core/shell colloidal quantum dot exciplex states for the development of highly efficient quantum-dot-sensitized solar cells. J. Am. Chem. Soc., 2013, 135, 15913–15922.
  • Lu, Z. et al., One-step aqueous synthesis of grapheme–CdTe quantum dot-composed nanosheet and its enhanced photoresponses. J. Colloid Interf. Sci., 2011, 353, 588–592.
  • Zhang X. et al., Comparative cytotoxicity of gold–doxorubicin and InP–doxorubicin conjugates. Nanotechnology, 2012, 23, 275103–275115.
  • Zaban, A. M. O. I. et al., Photosensitization of nanoporous TiO2 electrodes with InP quantum dots. Langmuir, 1998, 14, 3153– 3156.
  • Taniguchi, S., Green, M. and Lim, T., The room-temperature synthesis of anisotropic CdHgTe quantum dot alloys: a ‘molecular welding’ effect. J. Am. Chem. Soc., 2011, 133, 3328–3331.
  • Feteha, M. Y. and Ameen, M., CdHgTe quantum dots sensitized solar cell with using of titanium dioxide nanotubes. J. Power Energy Eng., 2013, 1, 67–72.
  • Sudhagar, P. et al., Quantum dot-sensitized solar cells. In Low-Cost Nanomaterials, Springer London, 2014, pp. 89–136.
  • Tian, J. et al., Architectured ZnO photoelectrode for high efficiency quantum dot sensitized solar cells. Energ. Environ. Sci., 2013, 6, 3542–3547.
  • Perera, V. P. S., An efficient dye-sensitized photoelectrochemical solar cell made from oxides of tin and zinc. Chem. Commun., 1999, 1, 15–16.
  • Sayama, K., Sugihara, H. and Arakawa, H., Photoelectrochemical properties of a porous Nb2O5 electrode sensitized by a ruthenium dye. Chem. Mater., 1998, 10, 3825–3832.
  • Liu, Z. et al., Enhancing the performance of quantum dots sensitized solar cell by SiO2 surface coating. Appl. Phys. Lett., 2010, 96, 233107-3.
  • Seol, M. et al., Novel nanowire array based highly efficient quantum dot sensitized solar cell. Chem. Commun., 2010, 46, 5521– 5523.
  • Yu, Z. et al., Highly efficient quasi-solid-state quantum-dotsensitized solar cell based on hydrogel electrolytes. Electrochem. Commun., 2010, 12, 1776–1779.
  • Fang, B. et al., Facile synthesis of open mesoporous carbon nanofibers with tailored nanostructure as a highly efficient counter electrode in CdSe quantum-dot-sensitized solar cells. J. Mater. Chem., 2011, 21, 8742–8748.
  • Radich, J. G., Dwyer, R. and Kamat, P. V., Cu2S reduced graphene oxide composite for high-efficiency quantum dot solar cells. Overcoming the redox limitations of S2–/Sn2– at the counter electrode. J. Phys. Chem. Lett., 2011, 2, 2453–2460.
  • Zhang, Q. et al., Highly efficient CdS/CdSe-sensitized solar cells controlled by the structural properties of compact porous TiO2 photoelectrodes. Phys. Chem. Chem. Phys., 2011, 13, 4659–4667.
  • Hossain, M. A. et al., CdSe-sensitized mesoscopic TiO2 solar cells exhibiting >5% efficiency: redundancy of CdS buffer layer. J. Mater. Chem., 2012, 22, 16235–16242.
  • Santra, P. K. and Kamat, P. V., Mn-doped quantum dot sensitized solar cells: a strategy to boost efficiency over 5%. J. Am. Chem. Soc., 2012, 134, 2508–2511.
  • Law, M. et al., Nanowire dye-sensitized solar cells. Nature Mater., 2005, 4, 455–459.
  • Yang, P. et al., Controlled growth of ZnO nanowires and their optical properties. Adv. Funct. Mater., 2002, 12, 323–331.
  • Xia, J. B. and Zhang, X. W., Electronic structure of ZnO wurtzite quantum wires. Eur. Phys. J. B, 2006, 49, 415–420.
  • Quintana, M. et al., Comparison of dye-sensitized ZnO and TiO2 solar cells: studies of charge transport and carrier lifetime. J. Phys. Chem. C, 2007, 111, 1035–1041.
  • Baruah, S. and Dutta, J., Hydrothermal growth of ZnO nanostructures. Sci. Technol. Adv. Mater., 2009, 10, 013001–18.
  • Singh, N. et al., ZnO based quantum dot sensitized solar cell using CdS quantum dots. J. Renew. Sustain. Energy, 2012, 4, 013110-10.
  • Yuan, Z. and Longwei, Y., CdSe–CdS quantum dots co-sensitized ZnO hierarchical hybrids for solar cells with enhanced photoelectrical conversion efficiency. Nanoscale, 2014, 6, 13135–13144.
  • Eskandari, M., Ahmadi, V. and Kohnehpoushi, S., Improvement of ZnO nanorod based quantum dot (cadmium sulfide) sensitized solar cell efficiency by aluminum doping. Phys. E, 2015, 66, 275–282.
  • Wang, X. et al., Tandem colloidal quantum dot solar cells employing a graded recombination layer. Nature Photoni., 2011, 5, 480–484.
  • Gratzel, M., Photoelectrochemical cells. Nature, 2001, 414, 338–344.
  • Chang, C. H. and Lee, Y. L., Chemical bath deposition of CdS quantum dots onto mesoscopic TiO2 films for application in quantum-dot-sensitized solar cells. Appl. Phys. Lett., 2007, 91, 053503-3.
  • Bang, J. H. and Kamat, P. V., Quantum dot sensitized solar cells. A tale of two semiconductor nanocrystals: CdSe and CdTe. ACS Nano, 2009, 3(6), 31467–31476.
  • Kongkanand, A. et al., Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe–TiO2 architecture. J. Am. Chem. Soc., 2008, 130, 4007–4015.
  • Chen, J. et al., An oleic acid-capped CdSe quantum-dot sensitized solar cell. Appl. Phys. Lett., 2009, 94, 153115-3.
  • Gorer, S. and Hodes, G., Quantum size effects in the study of chemical solution deposition mechanisms of semiconductor films. J. Phys. Chem., 1994, 98, 5338–5346.
  • Thambidurai, M. et al., Strong quantum confinement effect in nanocrystalline CdS. J, Mater. Sci., 2010, 45, 3254–3258.
  • Vogel, R., Hoyer, P. and Weller, H., Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors. J. Phys. Chem., 1994, 98, 3183–3188.
  • Schaller, R. D. and Klimov, V. I., High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Phys. Rev. Lett., 2004, 92, 18660-(1–16).
  • Lee, Y. K., Lee, H. and Park, J. Y., Tandem-structured, hot electron based photovoltaic cell with double Schottky barriers. Sci. Rep., 2014, 4, 4580-1–4580-6.
  • Meillaud, F. et al., Efficiency limits for single-junction and tandem solar cells. Sol. Energy Mater. Solar Cells, 2006, 90, 2952– 2959.
  • Nattestad, A. et al., Highly efficient photocathodes for dyesensitized tandem solar cells. Nature Mater., 2010, 9, 31–35.
  • Nozik, A. J., Quantum dot solar cells. Physica E, 2002, 14, 115– 120.
  • Benisty, H., Reduced electron-phonon relaxation rates in quantumbox systems: theoretical analysis. Phys. Rev. B, 1995, 51, 13281.
  • Nozik, A. J., Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots. Ann. Rev. Phys. Chem., 2001, 52, 193–231.
  • Bockelmann, U. and Bastard, G., Phonon scattering and energy relaxation in two-, one-, and zero-dimensional electron gases. Phys. Rev. B, 1990, 42, 8947.
  • Dou, L et al., Systematic investigation of benzodithiophene- and diketopyrrolopyrrole-based low-bandgap polymers designed for single junction and tandem polymer solar cells. J. Am. Chem. Soc., 2012, 134, 10071–10079.
  • You, J. et al., A polymer tandem solar cell with 10.6% power conversion efficiency. Nature Commun., 2013, 4, 1446–1410.
  • Coffin, R. C. et al., Streamlined microwave-assisted preparation of narrow-bandgap conjugated polymers for high-performance bulk heterojunction solar cells. Nature Chem., 2009, 1, 657–661.
  • Mühlbacher, D. et al., High photovoltaic performance of a lowbandgap polymer. Adv. Mater., 2006, 18, 2884–2889.
  • Conibeer, G. et al., Silicon quantum dot nanostructures for tandem photovoltaic cells. Thin Solid Films, 2008, 516, 6748–6756.
  • Santra, P. K. and Kamat, P. V., Tandem-layered quantum dot solar cells: tuning the photovoltaic response with luminescent ternary cadmium chalcogenides. J. Am. Chem. Soc., 2013, 135, 877–885.
  • Lee, Y.-S. et al., High performance of TiO2/CdS quantum dot sensitized solar cells with a Cu–ZnS passivation layer. New J. Chem., 2017, 41, 1914–1917.
  • Vitoreti, A. B. F. et al., CdTe and CdTe/CdSe core/shell aqueous soluble quantum dots-sensitized solar cell. In Proceedings of International Conference, University of Minho, Braga, Partugal, 2017.
  • Mora-Sero, I. et al., Recombination in quantum dot sensitized solar cells. Acc. Chem. Res., 2009, 42, 1848–1857.
  • Guijarro, N. et al., Uncovering the role of the ZnS treatment in the performance of quantum dot sensitized solar cells. Phys. Chem. Chem. Phys., 2011, 13, 12024–12032.
  • Lai, L. H. et al., Sensitized solar cells with colloidal PbS–CdS core–shell quantum dots. Phys. Chem. Chem. Phys., 2014, 16, 736–742.
  • Selopal, G. S. et al., Highly stable colloidal ‘giant’ quantum dots sensitized solar cells. Adv. Funct. Mater., 2017, 27, 1701468.
  • Atwater, H. A. and Polman, A., Plasmonics for improved photovoltaic devices. Nature Mater., 2010, 9, 205–213.
  • Green, M. A. and Pillai, S., Harnessing plasmonics for solar cells. Nature Photon., 2012, 6, 130–132.
  • Nelson, J., The Physics of Solar Cells, World Scientific Publishing Co Inc, London, 2003.
  • Hagglund, C. and Apel, S. P. L., Plasmonic near-field absorbers for ultrathin solar cells. J. Phys. Chem. Lett., 2012, 3, 1275–1285.
  • Hagglund, C. and Kasemo, B., Nanoparticle plasmonics for 2Dphotovoltaics: mechanisms, optimization and limits. Opt. Exp., 2009, 17, 11944–11957.
  • Hagglund, C. and Apell, S. P., Resource efficient plasmon-based 2D-photovoltaics with reflective support. Opt. Exp., 2010, 18, A343–A356.
  • Westphalen, M. et al., Metal cluster enhanced organic solar cells. Sol. Energ. Mater. Sol. Cells, 2000, 61, 97–105.
  • Moulin, E. et al., Photoresponse enhancement in the near infrared wavelength range of ultrathin amorphous silicon photosensitive devices by integration of silver nanoparticles. Appl. Phys. Lett., 2009, 95, 033505.
  • White, T. P. and Kylie, R. C., Plasmon-enhanced internal photoemission for photovoltaics: theoretical efficiency limits. Appl. Phys. Lett., 2012, 101, 073905-4.
  • Fleetham, T. et al., Photocurrent enhancements of organic solar cells by altering dewetting of plasmonic Ag nanoparticles. Sci. Rep., 2015, 5, 14250-1–14250-9.
  • Aneesh, P. M. et al., Enhancement in photovoltaic properties of plasmonic nanostructures incorporated organic solar cells processed in air using P3HT: PCBM as a model active layer. Org. Photon. Photovolt., 2015, 3, 64–70.
  • Konda, R. B. et al., Surface plasmon excitation via Au nanoparticles in n-CdSe⁄ p-Si heterojunction diodes. Appl. Phys. Lett., 2007, 91, 191111-1–191111-3.
  • Zhao, W. W. et al., Exciton-plasmon interactions between CdS quantum dots and Ag nanoparticles in photoelectrochemical system and its biosensing application. Anal. Chem., 2012, 84, 5892–5897.
  • Derkacs, D. et al., Nanoparticle-induced light scattering for improved performance of quantum-well solar cells. Appl. Phys. Lett., 2008, 93, 091107-1–091107-3.
  • Kawawaki, T. et al., Efficiency enhancement of PbS quantum dot/ZnO nanowire bulk-heterojunction solar cells by plasmonic silver nanocubes. ACS Nano, 2015, 9, 4165–4172.
  • Nakayama, K., Tanabe, K. and Atwater, H. A., Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Appl. Phys. Lett., 2008, 93, 121904-1–121904-3.
  • Pryce, I. M. et al., Plasmonic nanoparticle enhanced photocurrent in GaN/InGaN/GaN quantum well solar cells. Appl. Phys. Lett,, 2010, 96, 153501-3.
  • Lu, H. F. et al., Plasmonic quantum dot solar cells for enhanced infrared response. Appl. Phys. Lett., 2012, 100, 103505-4.
  • Pillai, S. et al., Surface plasmon enhanced silicon solar cells. J. Appl. Phys., 2007, 101, 093105-8.
  • Gusak, V., Kasemo, B. and Hagglund, C., High aspect ratio plasmonic nanocones for enhanced light absorption in ultrathin amorphous silicon films. J. Phys. Chem. C, 2014, 118, 22840–22846.
  • Westphalen, M. et al., Metal cluster enhanced organic solar cells. Sol. Energy Mater. Solar Cells, 2000, 61, 97–105.
  • Morfa, A. J. et al., Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics. Appl. Phys. Lett., 2008, 92, 013504.
  • Yin, X., Que, W. and Shen, F., Improvement of the performance of dye sensitized solar cell using ZnO nanorods array deposited with Ag nanoparticles as photoanode. J. Sol–gel Sci. Technol., 2012, 63, 279–285.
  • Muduli, S. et al., TiO2-Au plasmonic nanocomposite for enhanced dye-sensitized solar cell (DSSC) performance. Sol. Energ., 2012, 86, 1428–1434.
  • Catchpole, K. R. and Polman, A., Design principles for particle plasmon enhanced solar cells. Appl. Phys. Lett., 2008, 93, 191113-3.

Abstract Views: 391

PDF Views: 114




  • Quantum Dots for Solar Energy Harvesting

Abstract Views: 391  |  PDF Views: 114

Authors

Karen Das
Department of ECE, School of Technology, Assam Don Bosco University, Azara, Guwahati - 781 017, India
Sunandan Baruah
Department of ECE, School of Technology, Assam Don Bosco University, Azara, Guwahati - 781 017, India

Abstract


Owing to their versatile optical and electrical properties, semiconductor quantum dots are attracting attention as a material of choice for solar energy conversion. The quantum dot sensitized solar cells are considered as one of the most promising next-generation solar cells as they have the advantage of tunable band-gap energy and multiple exciton generation. We present here a study on quantum dot sensitized solar cells considering their construction and working, impact of incorporation of nanomaterials in solar cells and various structures for improving the performance of solar cells.

Keywords


Light Harvesting, Multiple Exciton Generation, Quantum Dots, Solar Cells, Tunable Band Gap.

References





DOI: https://doi.org/10.18520/cs%2Fv115%2Fi4%2F659-668