Open Access Open Access  Restricted Access Subscription Access

Lumen Anatomy and Localization of Wolbachia Sp. in the Thrips, Plicothrips apicalis (Bagnall)


Affiliations
1 Gut Biology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
 

A detailed anatomical study of digestive system of insects has been done in some of the major insect orders such as Lepidoptera, Diptera, Coleoptera and Hemiptera. For other insects such as thrips, their emergence as an important agricultural pest has brought order Thysanoptera to focus. We describe the alimentary canal of Plicothrips apicalis (Bagnall) (Phlaeothripidae) and localize Wolbachia sp. in P. apicalis. The digestive tract of P. apicalis, a grass feeding species, is observed to be well demarcated in the foregut, midgut and hindgut. We evince a new finding in this study that the midgut opens into a globular chamber containing the mycetome. It is from the globular chamber that the hindgut follows and at their juncture, two pairs of malphigian tubules originate. The presence of mycetome has been reported in order Hemiptera and Isoptera that bears a structure similar to mycetome, known as paunch that harbours protists which are known to be involved in cellulose digestion. Presence of mycetome has not been reported in other thrip species till date except in Bactothrips buffai. The finding of an additional structure in the alimentary canal of thrips is suggestive of the significance it might hold in the evolutionary linking with other insect orders. We also tried localizing endosymbiont in P. apicalis and detected Wolbachia sp. in the abdominal region of both the larva and the adult.

Keywords

Gut, Mycetome, Thrips, Termites, Wolbachia Sp.
User
Notifications
Font Size

  • Sansonetti, P. J., War and peace at mucosal surfaces. Nat. Rev. Immunol., 2004, 4, 953-964.
  • Chapman, R. F., The Insects: Structure and Function, Cambridge University Press, Cambridge, 1998.
  • Klowden, M. J., Physiological Systems in Insects, Elsevier Incorporation, Academic Press, London, Second edn, 2007.
  • Baker, W. V. and Estrin, C. L., The alimentary canal of Scolytus multistriatus (Coleoptera-Scolytidae). A histological study. Can Entomol., 1974, 106, 673-686.
  • Diaz, E., Cisneros, R., Zuniga, G. and Uria-Galicia, E., Comparative anatomical and histological study of the alimentary canal of Dendroctonus parallelocollis, D. rhizophagus and D. valens (ColeopteraScolytidae). Ann. Entomol. Soc. Am., 1998, 91, 479-487.
  • Diaz, E., Arciniega, O., Sanchez, L., Cisneros, R. and Zuniga, G., Anatomical and histological comparison of the alimentary canal of Dendroctonus micans, D. ponderosae, D. pseudotsugae pseudotsugae, D. rupifenis and D. terebrans (Coleoptera-Scolytidae). Ann. Entomol. Soc. Am., 2003, 96, 144-152.
  • Silva-Olivares, A., Diaz, E., Shibayama, M., Tsutsumi, V., Cisneros, R. and Zuniga, G., Ultrastructural study of the midgut and hindgut in eight species of the genus Dendroctonus Erichson (Coleoptera-Scolytidae). Ann. Entomol. Soc. Am., 2003, 96, 883-900.
  • Schneider, I. and Rudinsky, A., Anatomical and histological changes in internal organs of adult Trypodendron lineatum, Gnathotichus retusus and G. sulcatus (Coleoptera-Scolytidae). Ann. Entomol. Soc. Am., 1969, 62, 995-1003.
  • Lopez-Buenfil, J. A., Valdez, J., Equihau, A. and Burgos, A., El proventriculo como estructura para identificar generos Mexicanos de Scolytidae (Coleoptera). Folia Entomol. Mex., 2001, 40, 325-372.
  • Jordan, K., Anatomie und Biologie der physapoda, Z. Wiss. Zool., 1888, 47, 541-620.
  • Buffa, P., Contributo allo studio anatomico della Heliothrips haemorrhoidalis. Revista di Patologia Vegetale., 1899, 7, 94-108, 129-142.
  • Uzel, H., Monographie der Ordnung Thysanoptera. Uzel, Koniggratz., 1895, p. 473.
  • Cary, L. R., The grass thrips (Anaphothrips striata Osborn). Bull. Maine Agric. Exp. Stat., 1902, 83, 97-128.
  • Sharga, US, On the internal anatomy of some thysanoptera. Ecol. Entomol., 1933, 81, 185-204.
  • Zur Strassen, R., Key to and catalogue of the known species of Chirothrips Haliday, 1836 (Thysanoptera: Thripidae). J. Entomol. Soc. South. Afr., 1960, 23, 144-176.
  • Mound, L. A., A review of R.S. Bagnall’s Thysanoptera collections. Bull. Brit. Mus. (Nat. Hist) Entomol., 1968, 11, 1-181.
  • Akram, M., Naimuddin, Pratap, A., Malviya, N. and Yadav, P., First report of Groundnut bud necrosis virus infecting wild species of Vigna, based on NP gene sequence characteristics. Phytopathol. Mediterr., 2013, 52, 532-540.
  • Annual Report 2010-2011, by Indian Institute of Pulses Research, Kanpur.
  • Priesner, H., On the Haplothrips from the Oriental region. Rec. Indian Mus., 1933, 35, 347-369.
  • Weisburg, W. G., Barns, S. M., Pelletier, D. A. and Lane, D. J., 16S ribosomal DNA amplification for phylogenetic study. J. Biotechnol., 1991, 173, 697-703.
  • Singh, S. T., Kumar, J., Thomas, A., Ramamurthy, V. V. and Rajagopal, R., Detection and localization of Rickettsia sp. in mealybug. Environ. Entomol., 2013, 42, 711-716.
  • Skaljac, M., Zanic, K., Ban, S. G., Kontsedalov, S. and Ghanim, M., Co-infection and localization of secondary symbionts in two whitefly species. BMCMicrobiol., 2010, 10, 142.
  • Raina, H. S., Singh, A., Popli, S., Pandey, N. and Rajagopal, R., Infection of bacterial endosymbionts in insects: a comparative study of two techniques, viz. PCR and FISH for detection and localization of symbionts in whitefly, Bemisia tabaci. PLOS ONE, 2015, 10(8), e0136159.
  • Hosokawa, T., Kikuchi, Y., Shimada, M. and Fukatsu, T., Obligate symbiont involved in pest status of host insect. Proc. R. Soc. B, 2007, 274, 1979-1984.
  • Wigglesworth, V. B., Digestion and nutrition. In The Principles o f Insect Physiology, Chapman and Hall, London, UK, 7th edn, 1972.
  • Chapman, R. F., Structure of the digestive system. In Comprehensive Insect Physiology, Biochemistry, and Pharmacology, Pergamon Press, Oxford, UK, 1985.
  • Karasov, W. H. and Douglas, A. E., Comparative digestive physiology. Compr. Physiol., 2013, 3, 741-783.
  • Mound, L. A., Thrips and their host plants; New Australian records (Thysanoptera; Terebrantia). Aust. Entomol., 2002, 29, 49-60.
  • Ananthakrishnan, T. N. and Annadurai, R. S., Thrips tospovirus interaction: biological and molecular implications. Curr. Sci., 2007, 92, 1083-1086.
  • Moritz, G., Kumm, S. and Mound, L., Tospovirus transmission depends on thrips ontogeny. Virus R es., 2004, 100, 143-149.
  • Ullman, D. E., Westcot, D. M., Hunter, B. W. and Mau, R. F. L., Internal anatomy and morphology of Frankliniella occidentalis (pergande) (thysanoptera: thripidae) with special reference to interactions between thrips and tomato spotted wilt virus. Int. J. Insect Morphol. Embryol., 1989, 18, 289-310.
  • Ullman, D. E., Westcot, D. M., Mau, R. F. L., Cho, J. J. and Custer, D. M., Tomato spotted wilt virus and one thrips vector: Frankliniella occidentalis (Pergande) internal morphology and virus location. Virus-Thrips-Plant Interaction of tomato spotted wilt virus. Proceedings of the USDA Workshop. Agricultural Research Serv ARS-87 (eds Hsu, H. and Lawson, R.), 1991.
  • Ferreira, C., Ribeiro, A. F. and Terra, W. R., Fine structure of the larval midgut of the fly Rhynchoscira and its physiological implications. J. Insect. Physiol., 1981, 27, 559-570.
  • Musgrave, A. J., Insect mycetomes. Can. Entomol., 1964, 96, 377-389.
  • Baumann, P., Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu. Rev. Entomol., 2005, 59, 155-189.
  • Buchner, P., Symbiosis in animals which suck plant juices. In Endosymbiosis o f Animals with Plant Microorganisms, Interscience (ed. Buchner, P.), New York, 1965, pp. 210-432.
  • Brune, A., Symbiotic digestion of lignocelluloses in termite guts. Nat. Rev. Microbiol., 2014, 12, 168-180.
  • Douglas, A. E., Phloem-sap feeding by animals: problems and solutions. J. Exp. Bot., 2006, 57, 747-754.
  • Werren, J. H., Baldo, L. and Clark, M. E., Wolbachia: master manipulators of invertebrate biology. Nat. Rev. Microbiol., 2008, 6, 741-751.
  • Nault, B. A. et al., Reproductive modes in onion thrips (Thysanoptera: Thripidae) populations from New York fields. Enviorn. Entomol., 2006, 35, 1264-1271.

Abstract Views: 423

PDF Views: 114




  • Lumen Anatomy and Localization of Wolbachia Sp. in the Thrips, Plicothrips apicalis (Bagnall)

Abstract Views: 423  |  PDF Views: 114

Authors

Singh Ambika
Gut Biology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
Raman Rajagopal
Gut Biology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India

Abstract


A detailed anatomical study of digestive system of insects has been done in some of the major insect orders such as Lepidoptera, Diptera, Coleoptera and Hemiptera. For other insects such as thrips, their emergence as an important agricultural pest has brought order Thysanoptera to focus. We describe the alimentary canal of Plicothrips apicalis (Bagnall) (Phlaeothripidae) and localize Wolbachia sp. in P. apicalis. The digestive tract of P. apicalis, a grass feeding species, is observed to be well demarcated in the foregut, midgut and hindgut. We evince a new finding in this study that the midgut opens into a globular chamber containing the mycetome. It is from the globular chamber that the hindgut follows and at their juncture, two pairs of malphigian tubules originate. The presence of mycetome has been reported in order Hemiptera and Isoptera that bears a structure similar to mycetome, known as paunch that harbours protists which are known to be involved in cellulose digestion. Presence of mycetome has not been reported in other thrip species till date except in Bactothrips buffai. The finding of an additional structure in the alimentary canal of thrips is suggestive of the significance it might hold in the evolutionary linking with other insect orders. We also tried localizing endosymbiont in P. apicalis and detected Wolbachia sp. in the abdominal region of both the larva and the adult.

Keywords


Gut, Mycetome, Thrips, Termites, Wolbachia Sp.

References





DOI: https://doi.org/10.18520/cs%2Fv115%2Fi7%2F1297-1304