Open Access
Subscription Access
Automatic Crater Classification Framework Based on Shape Parameters
This communication presents a framework for automatically classifying a crater image into one of its preservation states namely fresh, floor-fractured and degraded introducing a class of algorithms known as crater classification algorithms (CCA). This study involves identification of discriminatory parameters of classes, development and implementation of algorithms to automatically evaluate the parameters from a given Digital Elevation Model testing on representative craters of each class and evolve a decision tree framework for automatically classifying given crater image into its preservation class. This classification can be applied to craters that exhibit ambiguous topographies to test whether they were formed by impact erosion or igneous modification.
Keywords
Classification Algorithms, Computational Intelligence, Impact Craters, Shape Parameters.
User
Font Size
Information
- Salamuniccar, G. and Loncaric, S., Open framework for objective evaluation of crater detection algorithms with first test-field subsystem based on MOLA data. Adv. Sp. Res., 2008, 42(1), 6-19.
- Gandhi, S. and Suchit, P., Automatic crater detection techniques: a chronological survey. Int. J. Res. Comput. Sci. Inf., 2013, 2(2(A)), 207-213.
- Pike, R. J., Crater dimensions from Apollo data and supplemental sources. Earth. Moon. Planets, 1976, 15(3), 463-477.
- Head, J. W., Processes of lunar crater degradation: Changes in style with geologic time. The Moon, 1975, 12(3), 299-329.
- Schultz, P. H., Floor-fractured lunar craters. Earth. Moon. Planets, 1976, 15(3), 241-273.
- . Jozwiak, L. M., Head, J. W., Zuber, M. T., Smith, D. E. and Neumann, G. A., Lunar floor-fractured craters: Classification, distribution, origin and implications for magmatism and shallow crustal structure. J. Geophys. Res. E Planets, 2012, 117(11).
- Li, B., Ling, Z. C., Zhang, J., Wu, Z. C., Ni, Y. H. and Chen, J., The shape and elevation analysis of lunar crater’s true margin. In Lunar and Planetary Science Conference, Texas, 2015, vol. 46, p. 1709.
- Losiak, A., Kohout, K., Sullivan, K. O., Thaisen, K. and Weider, S. , Lunar impact crater database. Lunar Explor. Summer Intern Progr. Lunar Planet. Inst., Texas, 2008.
- Purohit, S., Gandhi, S. R. and Prakash, C., A novel framework for automatic determination of morphometric parameters of lunar floor-fractured craters. Planet. Space Sci., 2018.
- Smith, D. E. et al., The lunar orbiter laser altimeter investigation on the lunar reconnaissance orbiter mission. Space Sci. Rev., 2010, 150(1-4), 209-241.
- Melosh, H. J., Impact cratering: A geologic process. Oxford Univ. Press (Oxford Monogr. Geol. Geophys. No. 11), 1989, vol. 11, p. 253.
- Oberbeck, V. R. and Quaide, W. L., Genetic implications of Lunar regolith thickness variations. Icarus, 1968, 9(1-3), 446-465.
- Stoffler, D., Cratering history and lunar chronology. Rev. Mineral. Geochem., 2006, 60(1), 519-596.
- Chen, M., Lei, M., Liu, D., Zhou, Y., Zhao, H. and Qian, K., Morphological features-based descriptive index system for lunar impact craters. ISPRS Int. J. Geo-Information, 2017, 7(2), 5.
- Baldwin, R. B., The Face o f the Moon, University of Chicago Press, Chicago, 1949.
- Fielder, G., Lunar Geology, Lutterworth Press, London, 1965.
- Wood, C. A. and Anderson, L., New morphometric data for fresh lunar craters. In Lunar and Planetary Science Conference Proceedings, 1978, vol. 9, pp. 3669-3689.
Abstract Views: 320
PDF Views: 121