Open Access Open Access  Restricted Access Subscription Access

Bacterial Diversity at a Shallow-Water Hydrothermal Vent (Espalamaca) in Azores Island


Affiliations
1 Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa 403 004, India
2 IMAR-Department of Oceanography and Fisheries, University of Azores, Rua Prof Frederico Machado 9901-862, Horta, Portugal
 

A low-temperature shallow-water hydrothermal vent field was discovered during the summer of 2010 in the Faial-Pico channel off the Espalamaca headland, Faial Island, Azores, Portugal, NE Atlantic. The present study analyses bacterial communities present in shallowwater hydrothermal vent of Espalamaca using SSU rRNA-based clone library approach. Clones of shallow vent sediment sample revealed the dominance of Proteobacteria (including α, γ, ε, δ, ζ subdivisions) and Bacteroidetes with 36% and 28% of the whole community respectively. The dominance of γ-Proteobacteria is the unique characteristic of this shallow vent and it coincides with the South Tonga Arc and Bahía Concepción (Pacific Ocean), whereas ε- Proteobacteria groups were reported to be high in the majority of the hydrothermal vents. Though the sampling sites of the venting and non-venting regions of Espalamaca were only 500 m apart, high variation (>80%) of phylotypes was found between the regions.

Keywords

Bacterial Diversity, Clone Library, Hydrothermal Vent, Phylogeny, Shallow Water.
User
Notifications
Font Size

  • Jannasch, H. W. and Mottl, M. J., Geomicrobiology of deep-sea hydrothermal vents. Science, 1985, 229, 717–725.
  • Nakagawa, S. and Takai, K., Deep-sea vent chemoautotrophs: diversity, biochemistry and ecological significance. FEMS Microbiol. Ecol., 2008, 65, 1–14.
  • Tarasov, V. G., Gebruk, A. V., Mironov, A. N. and Moskalev, L. I., Deep-sea and shallow-water hydrothermal vent communities: two different phenomena? Chem. Geol., 2005, 224, 5–39.
  • Baross, J. A. and Hoffman, S. E., Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life. Origins Life Evol. B, 1985, 15, 327–345.
  • Zhou, H., Li, J., Peng, X., Meng, J., Wang, F. and Ai, Y., Microbial diversity of a sulphide black smoker in main Endeavear hydrothermal vent field, Juan de Fuca Ridge. J. Microbiol., 2009, 47, 235–247.
  • Li, J., Peng, X., Zhou, H., Li, J. and Sun, Z., Molecular evidence for microorganisms participating in Fe, Mn, and S biogeochemical cycling in two low-temperature hydrothermal fields at the Southwest Indian Ridge. J. Geophys. Res.: Biogeosci., 2013, 118, 665–679.
  • Lentini, V., Gugliandolo, C., Bunk, B., Overmann, J. and Maugeri, T. L., Diversity of prokaryotic community at a shallow marine hydrothermal site elucidated by Illumina sequencing technology. Curr. Microbiol., 2014, 69, 457–466.
  • López-García, P., Duperron, S., Philippot, P., Foriel, J., Susini, J. and Moreira, D., Bacterial diversity in hydrothermal sediment and epsilonproteobacterial dominance in experimental microcolonizers at the Mid-Atlantic Ridge. Environ. Microbiol., 2003, 5, 961– 976.
  • Moyer, C. L., Dobbs, F. C. and Karl, D. M., Phylogenetic diversity of the bacterial community from a microbial mat at an active, hydrothermal vent system, Loihi Seamount, Hawaii. Appl. Environ. Microbiol., 1995, 61, 1555–1562.
  • Polz, M. F. and Cavanaugh, C., Dominance of one bacterial phylotype at a Mid-Atlantic Ridge hydrothermal vent site. Proc. Natl. Acad. Sci. USA, 1995, 92, 7232–7236.
  • Sievert, S. M., Muyzer, G. and Kuever, J., Identification of 16S Ribosomal DNA-defined bacterial populations at a shallow submarine hydrothermal vent near Milos Island (Greece). Appl. Environ. Microbiol., 2000, 66, 3102–3109.
  • Aguiar, P. and Costa, A. C., Shallow hydrothermal vents and marine protected areas within the Azores archipelago. In Geographic Technologies Applied to Marine Spatial Planning and Integrated Coastal Zone Management (eds Calado, H. and Gil, A.), University of Azores, Portugal, 2010, pp. 10–14.
  • Mohandass, C., Rajasabapathy, R., Ravindran, C., Colaco, A., Santos, R. S. and Meena, R. M., Bacterial diversity and their adaptations in the shallow-water hydrothermal vent at D. João de Castro Seamount (DJCS), Azores, Portugal. Cah. Biol. Mar., 2012, 53, 65–76.
  • Raghukumar, C., Mohandass, C., Cardicos, F., Costa, P. M. D., Santos, R. S. and Colaco, A., Assemblage of benthic diatoms and culturable heterotrophs in shallow-water hydrothermal vent of the D. João de Castro Seamount, Azores in the Atlantic Ocean. Curr. Sci., 2008, 95, 1715–1723.
  • Rajasabapathy, R., Mohandass, C., Colaco, A., Dastager, S. G., Santos, R. S. and Meena, R. M., Culturable bacterial phylogeny from a shallow-water hydrothermal vent of Espalamaca (Faial, Azores) reveals a variety of novel taxa. Curr. Sci., 2014, 106, 58– 69.
  • Luna, G. M., Dell’Anno, A. and Danovaro, R., DNA extraction procedure: a critical issue for bacterial assessment in marine sediments. Environ. Microbiol., 2006, 8, 308–320.
  • Lane, D. J., 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics (eds Stackebrandt, E. and Goodfellow, M.), John Wiley, New York, USA, 1991, pp. 115–175.
  • Wright, E. S., Yilmaz, L. S. and Noguera, E. R., DECIPHER, a search based approach to chimera identification for 16S rRNA sequences. Appl. Environ. Microbiol., 2012, 78, 717–725.
  • Thompson, J. D., Higgins, D. G. and Gibson, T. J., CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res., 1994, 22, 4673– 4680.
  • Saitou, N. and Nei, M., The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol., 1987, 4, 406–425.
  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S., MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol., 2011, 28, 2731– 2739.
  • Felsenstein, J., Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 1985, 39, 783–791.
  • Gotelli, N. J. and Entsminger, G. L., Ecosim: null models software for ecology, version 7. Acquired Intelligence, Inc. and KeseyBear, Burlington, Vt, USA, 2004.
  • Giovannelli, D., d’Errico, G., Manini, E., Yakimov, M. and Vetriani, C., Diversity and phylogenetic analyses of bacteria from a shallow-water hydrothermal vent in Milos Island (Greece). Front. Microbiol., 2013, 4, 184; doi:10.3389/fmicb.2013.00184.
  • Gerasimchuk, A. L. et al., The search for sulphate reducing bacteria in mat samples from the lost city hydrothermal field by molecular cloning. Microbiology, 2010, 79, 96–105.
  • Nercessian, O., Fouquet, Y., Pierre, C., Prieur, D. and Jeanthon, C., Diversity of Bacteria and Archaea associated with a carbonaterich metalliferous sediment sample from the Rainbow vent field on the Mid-Atlantic Ridge. Environ. Microbiol., 2005, 7, 698–714.
  • Roussel, E. G. et al., Comparison of microbial communities associated with three Atlantic ultramafic hydrothermal systems. FEMS Microbiol. Ecol., 2011, 77, 647–665.
  • Reed, A. J., Dorn, R., Van Dover, C. L., Lutz, R. A. and Vetriani, C., Phylogenetic diversity of methanogenic, sulfate-reducing and methanotrophic prokaryotes from deep-sea hydrothermal vents and cold seeps. Deep-Sea Res. II, 2009, 56, 1665–1674.
  • Cŕepeau, V., Cambon Bonavita, M.-A., Lesongeur, F., Randrianalivelo, H., Sarradin, P.-M., Sarrazin, J. and Godfroy, A., Diversity and function in microbial mats from the Lucky Strike hydrothermal vent field. FEMS Microbiol. Ecol., 2011, 76, 524–540.
  • Khandeparker, R., Meena, R. M. and Deobagkar, D., Bacterial diversity in deep-sea sediments from Afanasy Nikitin Seamount, Equatorial Indian Ocean. Geomicrobiol. J., 2014, 31, 942–949.
  • Hirayama, H. et al., Culture dependent and independent characterization of microbial communities associated with a shallow submarine hydrothermal system occurring within a coral reef off Taketomi Island, Japan. Appl. Environ. Microbiol., 2007, 73, 7642–7656.
  • Dávila-Ramos, S., Estradas-Romero, A., Prol-Ledesma, R. M. and Juárez-López, K., Bacterial populations (first record) at two shallow hydrothermal vents of the Mexican Pacific west coast. Geomicrobiol. J., 2015, 32, 657–665.
  • Murdock, S., Johnson, H., Forget, N. and Juniper, S. K., Composition and diversity of microbial mats at shallow hydrothermal vents on Volcono 1, South Tonga Arc. Cah. Biol. Mar., 2010, 51, 407– 413.
  • Gupta, R. S., The phylogeny of Proteobacteria: relationships to other eubacterial phyla and eukaryotes. FEMS Microbiol. Rev., 2000, 24, 367–402.
  • Longnecker, K. and Reysenbach, A. L., Expansion of the geographic distribution of a novel lineage of epsilon-Proteobacteria to a hydrothermal vent site on the Southern East Pacific Rise. FEMS Microbiol. Ecol., 2001, 35, 287–293.
  • Miroshnichenko, M. L., L’Haridon, S., Schumann, P., Spring, S., Bonch-Osmolovskaya, E. A., Jeanthon, C. and Stackebrandt, E., Caminibacter profundus sp. nov., a novel thermophile of Nautiliales ord. nov. within the class ‘Epsilonproteobacteria’, isolated from a deep-sea hydrothermal vent. Int. J. Syst. Evol. Microbiol., 2004, 54, 41–45.
  • Wirsen, C. O. et al., Characterization of an autotrophic sulphide oxidizing marine Arcobacter sp. that produces filamentous sulfur. Appl. Environ. Microbiol., 2002, 68, 316–325.
  • Fuhrman, J. A., McCallum, K. and Davis, A. A., Phylogenetic diversity of subsurface marine microbial communities from the Atlantic and Pacific Oceans. Appl. Environ. Microbiol., 1993, 59, 1294–1302.
  • Suzuki, M. T., Rappe, M. S., Haimberger, Z. W., Winfield, H., Adair, N., Strobel, J. and Giovannoni, S. J., Bacterial diversity among small-subunit rRNA gene clones and cellular isolates from the same seawater sample. Appl. Environ. Microbiol., 1997, 63, 983–989.
  • Malmstrom, R. R., Kiene, R. P., Cottrell, M. T. and Kirchman, D. L., Contribution of SAR11 bacteria to dissolved dimethylsulfoniopropionate and amino acid uptake in the North Atlantic Ocean. Appl. Environ. Microbiol., 2004, 70, 4129–4135.
  • Storesund, J. E. and Øvreås, L., Diversity of Planctomycetes in iron-hydroxide deposits from the Arctic Mid Ocean Ridge (AMOR) and description of Bythopirellula goksoyri gen. nov., sp. nov., a novel Planctomycete from deep sea iron-hydroxide deposits. Antonie van Leeuwenhoek, 2013, 104, 569–584.
  • Elshahed, M. S. et al., Phylogenetic and metabolic diversity of Planctomycetes from anaerobic, sulphide and sulphur rich Zodletone Spring Oklahoma. Appl. Environ. Microbiol., 2007, 73, 4707–4716.
  • Schmid, M. et al., Candidatus ‘Scalindua brodae’, sp. nov., Candidatus ‘Scalindua wagneri’, sp. nov., two new species of anaerobic ammonium oxidizing bacteria. Syst. Appl. Microbiol., 2003, 26, 529–538.
  • Strous, M. et al., Missing lithotroph identified as new planctomycete. Nature, 1999, 400, 446–449.
  • Thornburg, C. C., Zabriskie, T. M. and McPhail, K. L., Deep-sea hydrothermal vents: potential hot spots for natural products discovery. J. Nat. Prod., 2010, 73, 489–499.
  • Kumar, R. S. and Ferry, J. C., Prokaryotic carbonic anhydrases of earth’s environment. Subcell. Biochem., 2014, 75, 77–87.
  • Lau, E., Fisher, M. C., Steudler, P. A. and Cavanaugh, C. M., The methanol dehydrogenase gene, mxaF, as a functional and phylogenetic marker for Proteobacterial methanotrophs in natural environments. PLoS ONE, 2013, 8(2), e56993.

Abstract Views: 323

PDF Views: 113




  • Bacterial Diversity at a Shallow-Water Hydrothermal Vent (Espalamaca) in Azores Island

Abstract Views: 323  |  PDF Views: 113

Authors

Raju Rajasabapathy
Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa 403 004, India
Chellandi Mohandass
Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa 403 004, India
Raul Bettencourt
IMAR-Department of Oceanography and Fisheries, University of Azores, Rua Prof Frederico Machado 9901-862, Horta, Portugal
Ana Colaço
IMAR-Department of Oceanography and Fisheries, University of Azores, Rua Prof Frederico Machado 9901-862, Horta, Portugal
Joana Goulart
IMAR-Department of Oceanography and Fisheries, University of Azores, Rua Prof Frederico Machado 9901-862, Horta, Portugal
Ram Murti Meena
Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa 403 004, India

Abstract


A low-temperature shallow-water hydrothermal vent field was discovered during the summer of 2010 in the Faial-Pico channel off the Espalamaca headland, Faial Island, Azores, Portugal, NE Atlantic. The present study analyses bacterial communities present in shallowwater hydrothermal vent of Espalamaca using SSU rRNA-based clone library approach. Clones of shallow vent sediment sample revealed the dominance of Proteobacteria (including α, γ, ε, δ, ζ subdivisions) and Bacteroidetes with 36% and 28% of the whole community respectively. The dominance of γ-Proteobacteria is the unique characteristic of this shallow vent and it coincides with the South Tonga Arc and Bahía Concepción (Pacific Ocean), whereas ε- Proteobacteria groups were reported to be high in the majority of the hydrothermal vents. Though the sampling sites of the venting and non-venting regions of Espalamaca were only 500 m apart, high variation (>80%) of phylotypes was found between the regions.

Keywords


Bacterial Diversity, Clone Library, Hydrothermal Vent, Phylogeny, Shallow Water.

References





DOI: https://doi.org/10.18520/cs%2Fv115%2Fi11%2F2110-2121