Open Access
Subscription Access
Effects of calcium on emergence and seedling growth of castor bean under salinity stress
Calcium Application, Castor Bean Plant, Emergence, Growth, Salinity.A growth chamber study was conducted to assess the interactive effects of salinity and CaCa2+ amendment on the emergence and early seedling growth of castor bean (Ricinus communis L.). Seedlings were cultured in wet sands filled with one-half Hoagland solution containing salts either at 0, 50 or 100 mM NaCl. Supplemental CaCl2 was added at molar mass ratio of NaCl and CaCl2 of 20 : 0, 20 : 1, 20 : 2 and 20 : 3. Increasing salinity level reduced emergence rate, height and leaf area by up to 34.0%, 26.1% and 46.0% respectively. Calcium amendment increased emergence, height, leaf area, dry plant weight, chlorophyll a, b, chlorophyll (a + b) and soluble protein by up to 22.1%, 13.7%, 21.3%, 30.3%, 28.6%, 24.0%, 25.8% and 42.4% respectively. The present study indicates that the negative effects of salinity on emergence and early seedling growth of castor bean could be lessened with exogenous application of CaCa2+ at appropriate concentrations.
Keywords
Calcium Application, Castor Bean Plant, Emergence, Growth, Salinity.
User
Font Size
Information
- Munns, R., Comparative physiology of salt and water stress. Plant Cell Environ., 2002, 25, 239-250.
- Munns, R. and Tester, M., Mechanisms of salinity tolerance. Annu. Rev. Plant Biol., 2008, 59, 651-681.
- Kammann, C. I., Linsel, S., Johannes, W. and GöBling Koyro, H.
- W., Influence of biochar on drought tolerance of Chenopodium quinoa Willd and on soil-plant relations. Plant Soil, 2011, 345, 195-210.
- Shrivastava, P. and Kumar, R., Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci., 2015, 22, 123-131.
- Zhou, G. S., Ma, B. L., Xia, Y. R., Feng, C. N. and Qin, P., Culture of seashore mallow under different salinity levels using plastic nutrient-rich matrices and transplantation. Agron. J., 2010, 102, 395-402.
- Zhou, G. S., Ma, B. L., Li, J., Feng, C., Lu, J. F. and Qin, P., Determining salinity threshold level for castor bean emergence and stand establishment. Crop Sci., 2010, 50, 2030-2036.
- Li, G., Wan, S. W., Zhou, J., Yang, Z. Y. and Qin, P., Leaf chlorophyll fluorescence, hyperspectral reflectance, pigments content, malondialdehyde and proline accumulation responses of castor bean (Ricinus communis L.) seedlings to salt stress levels. Ind. Crops Prod., 2010, 31, 13-19.
- Quijano-Guerta, C. and Kirk, G. J. D., Tolerance of rice germplasm to salinity and other soil chemical stresses in tidal wetlands. Field Crops Res., 2002, 76, 111-121.
- Talaat, N. B., Ghoniem, A. E., Abdelhamid, M. T. and Shawky, B. T., Effective microorganisms improve growth performance, alter nutrients acquisition and induce compatible solutesaccumulation in common bean (Phaseolus vulgaris L.) plants subjected to salinity stress. Plant Growth Regul., 2015, 75, 281-295.
- Lolaei, A., Effect of calcium chloride on growth and yield of tomato under sodium chloride stress. J. Ornament. Horticult. Plants, 2012, 2, 155-160.
- Joshi, S. V., Patel, N. T., Pandey, I. B. and Pandey, A. N., Effect of supplemental Ca2+ on NaCl-stressed castor plants (Ricinus communis L.). Acta Bot. Croat, 2012, 71, 13-29.
- Sivritepe, N., Sivritepe, H. O. and Eris, A., The effects of NaCl priming on salt tolerance in melon seedlings grown under saline conditions. Sci. Hortic., 2003, 97, 229-237.
- Zhou, G. S. and Ma, B. L., Calcium amendment affects germination and early seedling growth of sweet sorghum under saline conditions. Agric. Sci. Technol., 2012, 13, 2538-2543.
- Zhou, G., Liu, G., An, L., Gao, H., Tong, C. and Lu, S., Water uptake and germination of castor seeds as influenced by salinity and foreign calcium amendment. J. Anhui Agric. Sci., 2012, 40, 16983-16986 (in Chinese with English abstract).
- Marschner, P., Mineral Nutrition of Higher Plants, Academic Press, London, UK, 2012, 3rd edn.
- Hirschi, K. D., The calcium conundrum. Both versatile nutrient and specific signal. Plant Physiol., 2004, 136, 2438-2442.
- Grattan, S. R. and Grieve, C. M., Salinity-mineral nutrient relations in horticultural crops. Sci. Hortic., 1999, 78, 127-157.
- Gao, H., Jia, Y. X., Guo, S. R., Lv, G. Y., Wang, T. and Li, J., Exogenous calcium affects nitrogen metabolism in ischolar_main-zone hypoxia-stressed muskmelon ischolar_mains and enhances short-term hypoxia tolerance. J. Plant Physiol., 2011, 168, 1217-1225.
- Rahman, A., Nahar, K., Hasanuzzaman, M. and Fujita, M., Calcium supplementation improves Na+/K+ ratio, antioxidant defense and glyoxalase systems in salt-stressed rice seedlings. Front Plant Sci., 2016; https://doi.org/10.3389/fpls.2016.00609.
- Al-Whaibi, M. H., Siddiqui, M. H. and Basalah, M. O., Salicylic acid and calcium-induced protection of wheat against salinity. Protoplasma, 2012, 249, 769-768.
- Hamada, A. M., Alleviation of the adverse effects of NaCl on germination of maize grains by calcium. Biol. Planta, 1994, 36, 623-627.
- Kazemi, M., Foliar application of salicylic acid and calcium on yield, yield component and chemical properties of strawberry. Bull. Environ. Pharmacol. Life Sci., 2013, 2, 19-23.
- Abbasi, N. A., Zahoor, M., Khan, H. A. and Qureshi, A. A., Effect of encapsulated calcium carbide application at different growth stages on potato (Solanum tuberosum L.) growth, yield and tuber quality. Pak. J. Bot., 2012, 44(4), 1543-1550.
- Wintermans, J. F. and De Mots, A., Spectrophotometric characteristics of chlorophylls a and b and their pheophytins in ethanol. Biochim. Biophys. Acta, 1965, 109, 448-453.
- Haslemore, R. M. and Roughan, P. G., Rapid chemical analysis of some plant constituents. J. Food Agric., 1976, 27, 1171-1178.
- Bradford, M. M., A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72, 248-254.
- Bates, L., Waldren, R. P. and Teare, I. D., Rapid determination of free proline for water-stress studies. Plant Soil, 1973, 39, 205-207.
- Tang, Q. Y. and Feng, M. G., Practical Statistics and DPS Data Processing System, China Agricultural Press, Beijing, China, 1997 (in Chinese).
- Wang, X. C. et al., Comparative proteomics of Thellungiella halophila leaves from plants subjected to salinity reveals the importance of chloroplastic starch and soluble sugars in halophyte salt tolerance. Mol. Cell. Proteomics, 2013, 12, 2174-2195.
- Garg, B. K., Vyas, S. P., Kathju, S., Lahiri, A. N., Mali, P. C. and Sharma, P. C., Salinity-fertility interaction on growth, mineral composition and nitrogen metabolism of Indian mustard. J. Plant Nutr., 1993, 16, 1637-1650.
- Sneha, S., Rishi, A., Dadhich, A. and Chandra, S., Effect of salinity on seed germination, accumulation of proline and free amino acid in Pennisetum glaucum (L.) R. Br. Pak. J. Biol. Sci., 2013, 16, 877-881.
- Cramer, G. R., Kinetics of maize leaf elongation. II. Response of a Na-excluding cultivar and a Na including cultivar to varying Na : Ca salinities. J. Exp. Bot., 1992, 43, 857-864.
- Shaikh, F., Gul, B., Li, W., Liu, X. and Khan, M. A., Effect of calcium and light on the germination of Urochondra setulosa under different salts. J. Zhejiang Univ. Sci. B, 2007, 8, 20-26.
- Arora, A., Sairam, R. K. and Srivastva, G. C., Oxidative stress and antioxidative systems in plants. Curr. Sci., 2002, 82, 1227-1238.
- Garg, B. K. and Gupta, I. C., Saline Wastelands Environment and Plant Growth, Scientific Publishers, Jodhpur, 1997, p. 287.
- Ratnakar, A. and Rai, A., Effect of sodium chloride salinity on seed germination and early seedling growth of Trigonella foenumgraecum l. Var. PEB. Octa J. Environ. Res., 2013, 1, 304-309.
- Tsegay, B. A. and Gebreslassie, B., The effect of salinity (NaCl) on germination and early seedling growth of Lathyrus sativus and Pisum sativum var. abyssinicum. Afr. J. Plant Sci., 2014, 8, 225- 231.
- Ehret, D. L., Redmann, R. E., Harvey, B. L. and Cipywnyk, A., Salinity-induced calcium deficiencies in wheat and barley. Plant Soil, 1990, 128, 143-151.
- Parida, A. K. and Das, A. B., Salt tolerance and salinity effects on plants. Ecotoxicol. Environ. Safe., 2005, 60, 324-349.
- Rahdari, P., Tavakoli, S. and Hosseini, S. M., Studying of salinity stress effect on germination, proline, sugar, protein, lipid and chlorophyll content in purslane (Portulaca oleracea L.) leaves. J. Stress Physiol. Biochem., 2012, 8, 182-193.
- Severino, L. S., Lima, R. L. S., Castillo, N., Lucena, A. M. A., Auld, D. L. and Udeigwe, T. K., Calcium and magnesium do not alleviate the toxic effect of sodium on the emergence and initial growth of castor, cotton, and safflower. Ind. Crops Prod., 2014, 57, 90-97.
- Bañuls, J. and Primo-Millo, E., Effects of chloride and sodium on gas exchange parameters and water relations of citrus plants. Physiol. Plant, 1992, 86, 115-123.
- Roberts, S. K. and Tester, M., Permeation of Ca2+ and monovalent cations through an outwardly rectifying channel in maize ischolar_main stelar cells. J. Exp. Bot., 1997, 48, 839-846.
- Liu, J. P. and Zhu, J. K., A calcium sensor homolog required for plant salt tolerance. Science, 1998, 280, 1943-1945.
- Zidan, I., Azaizeh, H. and Neumann, P. M., Does salinity reduce growth in maize ischolar_main epidermal cells by inhibiting their capacity for cell wall acidification? Plant Physiol., 1990, 93, 7-11.
- Azaizeh, H., Gunse, B. and Steudle, E., Effects of NaCl and CaCl2 on water transport across ischolar_main cells of maize (Zea mays L.) seedlings. Plant Physiol., 1992, 99, 886-894.
- Li, J., Responses of castor plant to exogenous calcium amendment at seedling stage under saline soil conditions. Master thesis, The School of Agronomy, Yangzhou University, China, 2011.
- Azooz, M. M., Shadab, M. A. and Abdel-Latef, A. A., The accumulation and compartmentation of proline in relation to salt tolerance of three sorghum cultivars. Indian J. Plant Physiol., 2004, 9, 1-8.
- Girija, C., Smith, B. N. and Swamy, P. M., Interactive effects of sodium chloride and calcium chloride on the accumulation of proline and glycinebetaine in peanut (Arachis hypogaea L.). Environ. Exp. Bot., 2002, 47, 1-10.
- Jun, H. R., Adam, L. H., Rozwadowski, K. L., Hammerlineli, J. L., Keller, W. A. and Selvaraj, G., Genetic engineering of glycine betain production towards enhancing stress tolerance in plants. Plant Physiol., 2000, 12, 747-756.
- Arshi, A., Abdin, M. Z. and Iqbal, M., Ameliorative effects of CaCl2 on growth, ionic relations and proline content of senna under salinity stress. J. Plant Nutr., 2005, 28, 101-125.
- Greenway, H. and Munns, R., Mechanism of salt tolerance in nonhalophytes. Annu. Rev. Plant Physiol., 1980, 31, 149-190.
- Zhong, H. and Lauchli, A., Spatial distribution of solutes, K, Na, Ca and their deposition rates of the growth zone of primary cotton ischolar_mains: effects of NaCl and CaCl2. Planta, 1994, 194, 34-41.
Abstract Views: 356
PDF Views: 110