The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


Solid-to-water proportion decides the effectiveness of paste backfill in terms of transportation characteristics during mine backfilling. This article highlights various laboratory tests conducted to determine the optimum solid-to-water ratio. Also, numerical simulation was carried out using computational fluid dynamics technique (ANSYS FLUENT) to understand the slump lifting process and variation in volume of the paste with time. The optimum slump and spread for lead–zinc mill tailings paste were in the range 190– 200 mm and 330–340 mm respectively. The optimum water content in the paste fill for this study was found to be 23 wt%. Results show that the solid percentage is inversely related with slump and spread. Also, an optimum slump lifting speed needs to be maintained for accurate values of slump and spread.

Keywords

Computational Fluid Dynamics Modelling, Mill Tailings, Paste Fill, Slump Test.
User
Notifications
Font Size