Open Access Open Access  Restricted Access Subscription Access

Geostationary Satellite-Based Observations for Ocean Applications


Affiliations
1 Earth, Ocean, Atmosphere and Planetary Sciences Area, Space Applications Centre, Indian Space Research Organisation, Ahmedabad 380 015, India
 

The study presents assessment and potential oceanographic applications of sea-surface temperature (SST), ocean net shortwave radiation (SWR) and chlorophyll concentration (CC) observations obtained from various geostationary platforms. SST and SWR from imager on-board Indian National Satellite (INSAT- 3D) and CC from Global Ocean Color Imager (GOCI) on-board communication ocean and meteorological satellite (COMS) have been used in the analysis. Relative advantages of high temporal resolution obtained from the geostationary platform compared to polar orbiting platforms are demonstrated. Comparison of INSAT-3D SST with observations gives a correlation of 0.85 and RMSE of 0.81 K. These platforms definitely provide a highly reliable source of continuous observations, which is useful in monitoring dynamic oceanic features such as thermal fronts, chlorophyll blooms, air–sea exchange fluxes, etc. on diurnal to daily timescales.

Keywords

Chlorophyll Concentration, Geostationary Satellites, INSAT-3D, Sea-surface Temperature, Shortwave Radiation.
User
Notifications
Font Size

  • CGMS-46, Report of the 46th Plenary Session of the Coordination Group for Meteorological Satellites, CGMS-46, Bengaluru, 3–8 June 2018.
  • Murakami, H., Ocean color estimation by Himawari-8/AHI, 2016; doi:10.1117/12.2225422.
  • Kurihara, Y., Murakami, H. and Kachi, M., Sea surface temperature from the new Japanese geostationary meteorological Himawari8 satellite. Geosphys. Res. Lett., 2015; doi:10.1002/2015 GL067159.
  • Nigam, R., Bhattacharya, B. K., Gunjal, K. R., Padmanabhan, N., and Patel, N. K., Formulation of time series vegetation index from Indian geostationary satellite and comparison with global product. J. Indian Soc. Remote Sensing, 2011, 40(1), 1–9.
  • Temimi, M., Romanov, P., Ghedira, H., Khanbilvardi, R. and Smith, K., Sea-ice monitoring over the Caspian Sea using geostationary satellite data. Int. J. Remote Sensing, 2011, 32(6), 1575– 1593.
  • Legeckis, R. and LeBorgne, P., EUMETSAT geostationary satellite monitors the sea surface temperatures of the Atlantic and Indian Oceans since 2004. Environ. Res. Eng. Manage., 2009, 3(49), 4–9.
  • Clayson, C. A. and Weitlich, D., Variability of tropical diurnal sea surface temperature. J. Climate, 2007; https://doi.org/10.1175/JCLI3999.1.
  • Wang, M., Son, S., Jiang, L. and Shi, W., Observations of ocean diurnal variations from the Korean geostationary ocean color imager (GOCI). Proc. SPIE 9111, Ocean Sensing and Monitoring VI, 911102, 2014; doi:10.1117/12.2053476.
  • Qi, L., Hu, C., Visser, P. M. and Ma, R., Diurnal changes of cyanobacteria blooms in Taihu Lake as derived from GOCI observations. Limnol. Oceanogr., 2018; doi:10.1002/lno.10802.
  • Lou, X. and Chuanmin, H., Diurnal changes of a harmful algal bloom in the East China Sea: observations from GOCI. Remote Sensing Environ., 2014, 140, 562–572; https://doi.org/10.1016/j.rse.2013.09.031.
  • Park, J.-E., Park, K.-A., Ullman, D. S., Cornillon, P. C. and Park, Young-Je, Observation of diurnal variations in mesoscale eddy sea-surface currents using GOCI data. Remote Sensing Lett., 2016; https://doi.org/10.1080/2150704X.2016.1219423,1131-1140.
  • Lukas, R., Observations of air–sea interaction in the western Pacific warm pool during WEPOCS. In Paper presented at the Western Pacific International Meeting and Workshop for TOGA COARE, Institut francais de Recherche scientifique pour le Developpement en Cooperation (ORSTOM), NOUMEA, New Caledonia, 1989.
  • Shinoda, T., Hendon, H. H. and Glick, J., Intraseasonal variability of surface fluxes and sea surface temperature in the tropical western Pacific and Indian Oceans. J. Climate, 1998, 11, 1685–1702.
  • Sengupta, D., Goswami, B. N. and Senan, R., Coherent intraseasonal oscillations of ocean and atmosphere during the Asian summer monsoon. Geophys. Res. Lett., 2001, 28, 4127–4130.
  • Shahi, N. R., Thapliyal, P. K., Sharma, R., Pal, P. K. and Sarkar, A., Estimation of net surface shortwave radiation over the tropical Indian Ocean using geostationary satellite observations: algorithm and validation. J. Geophys. Res., 2011, 116, C09031; doi:10.1029/ 2011JC007105.
  • Le Traon, P.-Y. et al., Use of satellite observations for operational oceanography: recent achievements and future prospects. J. Operational Oceanogr., 2015, 8(s12–s27); doi:10.1080/1755876X.2015.1022050.
  • Minnett, P. J., Zhu, X., Hendee, J., Manfrino, C. and Berkelmans, R., Diurnal heating of shallow water – implications for satellite remote sensing of sea-surface temperature and monitoring coastal environments. In IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2012, Munich, Germany, 22–27 July 2012.
  • Stuart‐Menteth, A. C., Robinson, I. S. and Challenor, P. G., A global study of diurnal warming using satellite‐derived sea surface temperature. J. Geophys. Res. (Oceans), 2003, 108(C5), 3155; doi:10.1029/2002JC001534.
  • Mathur, A., Srinivasan, I., Gohil, B. S., Sarkar, A. and Agarwal, V. K., Development of sea surface temperature retrieval algorithm for INSAT-3D. In Remote Sensing and Modeling of the Atmosphere, Oceans, and Interactions, International Society for Optics and Photonics, Goa, India, December 2006, vol. 6404, p. 64040E.
  • Martin, M. et al., Group for High Resolution Sea Surface temperature (GHRSST) analysis fields inter-comparisons. Part 1: a GHRSST multi-product ensemble (GMPE). Deep Sea Res. II, 2012, 77–80, 21–30; doi.org/10.1016/j.dsr2.2012.04.013.
  • Schmetz, J. and Liu, Q., Outgoing longwave radiation and its diurnal variation at regional scales derived from Meteosat. J. Geophys. Res., 1988, 93(11), 192–204.
  • Venkatesan, R., Lix, J. K., Phanindra Reddy, A., Arul Muthiah, M. and Atmanand, M. A. Two decades of operating the Indian moored buoy network: significance and impact. J. Oper. Oceanogr., 2016, 9(1), 45–54.
  • Shukla, M. V., Thapliyal, P. K., Bisht, J. H., Mankad, K. N., Pal, P. K. and Navalgund, R. R., Intersatellite calibration of Kalpana thermal infrared channel using AIRS hyperspectral observations. IEEE Geosci. Remote Sensing Lett., 2012, 9(4), 687–689; doi:10.1109/LGRS.2011.2178813.
  • Casey, K. and Cornillon, P., A comparison of satellite and in situ– based sea surface temperature climatologies. J. Climate, 1999, 12(6), 1848–1863.
  • Marra, J., Houghton, R. and Garside, C., Phytoplankton growth at the shelf-break front in the middle Atlantic bight. J. Mar. Res., 1990, 48(4), 851–868; doi:https://doi.org/10.1357/002224090784988665.
  • Weller, R. A. and Anderson, S. P., Surface meteorology and air– sea fluxes in the western equatorial Pacific Warm Pool during the TOGA Coupled Ocean–Atmosphere Response Experiment. J. Climate, 1996, 9, 1959–1990; doi:10.1175/1520-0442(1996)009< 1959:SMAASF>2.0.CO;2.

Abstract Views: 298

PDF Views: 118




  • Geostationary Satellite-Based Observations for Ocean Applications

Abstract Views: 298  |  PDF Views: 118

Authors

Neeraj Agarwal
Earth, Ocean, Atmosphere and Planetary Sciences Area, Space Applications Centre, Indian Space Research Organisation, Ahmedabad 380 015, India
Rashmi Sharma
Earth, Ocean, Atmosphere and Planetary Sciences Area, Space Applications Centre, Indian Space Research Organisation, Ahmedabad 380 015, India
Pradeep Thapliyal
Earth, Ocean, Atmosphere and Planetary Sciences Area, Space Applications Centre, Indian Space Research Organisation, Ahmedabad 380 015, India
Rishi Gangwar
Earth, Ocean, Atmosphere and Planetary Sciences Area, Space Applications Centre, Indian Space Research Organisation, Ahmedabad 380 015, India
Prateek Kumar
Earth, Ocean, Atmosphere and Planetary Sciences Area, Space Applications Centre, Indian Space Research Organisation, Ahmedabad 380 015, India
Raj Kumar
Earth, Ocean, Atmosphere and Planetary Sciences Area, Space Applications Centre, Indian Space Research Organisation, Ahmedabad 380 015, India

Abstract


The study presents assessment and potential oceanographic applications of sea-surface temperature (SST), ocean net shortwave radiation (SWR) and chlorophyll concentration (CC) observations obtained from various geostationary platforms. SST and SWR from imager on-board Indian National Satellite (INSAT- 3D) and CC from Global Ocean Color Imager (GOCI) on-board communication ocean and meteorological satellite (COMS) have been used in the analysis. Relative advantages of high temporal resolution obtained from the geostationary platform compared to polar orbiting platforms are demonstrated. Comparison of INSAT-3D SST with observations gives a correlation of 0.85 and RMSE of 0.81 K. These platforms definitely provide a highly reliable source of continuous observations, which is useful in monitoring dynamic oceanic features such as thermal fronts, chlorophyll blooms, air–sea exchange fluxes, etc. on diurnal to daily timescales.

Keywords


Chlorophyll Concentration, Geostationary Satellites, INSAT-3D, Sea-surface Temperature, Shortwave Radiation.

References





DOI: https://doi.org/10.18520/cs%2Fv117%2Fi3%2F506-515