The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


Epidemiological studies have demonstrated the cellu-lar toxicity of trihalomethanes (THMs) and haloacetic acids (HAAs) that usually form during water treat-ment with chemical chlorine disinfectants such as chlorine and chlorine dioxide. THMs and HAAs formation potential of organic precursor in a surface water source for water treatment with Cl2 and ClO2 was studied with reference to key determinants. It was observed that the concentration of THMs and HAAs formed during ClO2 treatment was significantly lower than that formed during Cl2 treatment concentration that formed during chlorination. HAAs, dominated with bromo-HAAs were predominantly formed with a negligible amount of THMs during ClO2 treatment. The combined total of HAAs and THMs formed dur-ing chlorine dioxide treatment was only 10–21% of that formed for chlorination. Among the HAAs spe-cies, dibromoacetic acid accounted for 86% of total HAAs during chlorine dioxide treatment whereas di-chloroacetic acid (36.7%) followed by dibromoacetic acid (20.4%) and bromochloroacetic acid (16.9%) were major constituent formed during chlorination. Species shift towards more toxic bromo-HAAs may pose a concern on shifting water treatment from chlo-rine to chlorine dioxide, particularly for bromide-containing water.

Keywords

Chlorination Byproducts, Chlorine Dioxide, Disinfection Byproducts, Haloacetic Acids, Trihalome-Thanes.
User
Notifications
Font Size