Open Access Open Access  Restricted Access Subscription Access

Enhancing the Anti-Tyrosinase Activity of a Hypersaline Kitasatospora Sp. Sbsk430 by Optimizing the Medium Components


Affiliations
1 Department of Biotechnology, Goa University, Goa 403 206, India
 

Tyrosinase inhibitors from natural resources have been gaining importance in pharmaceutical and horticultural applications. A full factorial central composite design was used to study the interactive effect of three variables, i.e. D-mannitol, yeast extract and sodium chloride of the fermentation medium for maximizing anti-tyrosinase activity (75.5%) of a hypersaline actinobacteria, Kitasatospora sp. SBSK430. A quadratic model was found to fit the anti-tyrosinase activity (R2 = 0.948). Response surface analysis revealed that the optimum values of the medium components were 15 g/l D-mannitol, 5.6 g/l yeast extract and 1.2 g/l sodium chloride. Tyrosinase inhibition activity was enhanced 1.1-fold, using this approach.

Keywords

Actinobacteria, Anti-Tyrosinase, Fermentation Medium, Hypersaline, Kitasatospora sp.
User
Notifications
Font Size

  • Terashita, T., Kono, M. and Murao, S., Promoting effect of S-PI on fruiting of Lentinus edodes. Trans. Mycol. Soc. Jpn., 1980, 21, 137–140.
  • Kim, Y. J. and Uyama, H., Tyrosinase inhibitors from natural and synthetic sources: structure, inhibition mechanism and perspective for the future. Cell Mol. Life Sci., 2005, 62, 1707–1723.
  • Lin, J. W., Chiang, H. M., Lin, Y. C. and Wen, K. C., Natural products with skin-whitening effects. J. Food Drug Anal., 2008, 16, 1–10.
  • Bode, W. and Huber, R., Natural protein proteinase inhibitors and their interaction with proteinases. Eur. J. Biochem., 1992, 204, 433–451.
  • Martinez, M. V. and Whitaker, J. R., The biochemistry and control of enzymatic browning. Trends Food Sci. Technol., 1995, 6, 195– 200.
  • Okami, Y. and Okazaki, T., Studies on marine microorganisms. (1) Isolation from the sea. J. Antibiot., 1976, 25, 456–460.
  • Ballav, S., Dastagar, S. G. and Kerkar, S., Biotechnological significance of actinobacterial research in India. Recent Res. Sci. Technol., 2012, 4, 31–39.
  • Manivasagan, P., Venkatesan, J., Sivakumar, K. and Kim, S. K., Marine actinobacterial metabolites: current status and future perspectives. Microbiol. Res., 2013, 168, 311–332.
  • Sosio, M., Bossi, E., Bianchi, A. and Donadio, S., Multiple peptide synthetase gene clusters in actinomycetes. Mol. Gen. Genet., 2000, 264, 213–221.
  • Bently, S. D., Chater, A. M., Cerdeno-Tarranga, C. and Thomson, N. R., Complete genome sequence of the model actinomycete Streptomyces coelicolor A3 (2). Nature, 2002, 417, 141–147.
  • Bull, A. T., Ward, A. C. and Goodfellow, M., Search and discovery strategies for biotechnology: the paradigm shift. Mol. Biol. Rev., 2000, 64, 573–606.
  • Imada, C., Enzyme inhibitors and other bioactive compounds from marine actinomycetes. Antonie Van Leeuwenhoek., 2005, 87, 59– 63.
  • Umezawa, H., Enzyme Inhibitors of Microbial Origin, University Park Press, Baltimore, USA, 1972.
  • Dharmaraj, S., Marine streptomyces as a novel source of bioactive substances. World J. Microbiol. Biotechnol., 2010, 26, 2123–2139.
  • Subramani, R. and Aalbersberg, W., Marine actinomycetes: an ongoing source of novel bioactive metabolites. Microbiol. Res., 2012, 167, 571–580.
  • Chang, T., An updated review of tyrosinase inhibitors. Int. J. Mol. Sci., 2009, 10, 2440–2475.
  • Loizzo, M. R., Tundis, R. and Mecnichini, F., Natural and synthetic tyrosinase inhibitors as antibrowning agents: an update. Compr. Rev. Food Sci. Food Saf., 2012, 11, 378–398.
  • Chen, C., Lin, L., Yang, W., Bordon, J. and Wang, H., An updated organic classification of tyrosinase inhibitors on melanin biosynthesis. Curr. Org. Chem., 2015, 19, 4–18.
  • Fernandes, M. S. and Kerkar, S., Microorganisms as a source of tyrosinase inhibitors: a review. Ann. Microbiol., 2017, 67, 343– 358.
  • Takahashi, Y., Seino, A., Iwai, Y. and Omura, S., Taxonomic study and morphological differentiation of an actinomycete genus, Kitasatospora. Zentralbl. Bakteriol., 1999, 289, 265–284.
  • Yoon, T. M., Kim, J. W., Kim, J. G., Kim, W. G. and Suh, J. W., Talosins A and B: new isoflavonol glycosides with potent antifungal activity from Kitasatospora kifunensis MJM341. J. Antibiot., 2006, 59, 633–639.
  • Shi, N., Lu, C., Ho, C. C. and Shen, Y., Kitasatodine and kitasatopenoid from Kitasatospora sp. H6549, a new strain from Malaysia. Rec. Nat. Prod., 2013, 7, 1–5.
  • Gill, K. A., Berrue, F., Arens, J. C., Carr, G. and Kerr, R., Cystargolides, 20S proteasome inhibitors isolated from Kitasatospora cystarginea. J. Nat. Prod., 2015, 78, 822–826.
  • Takahashi, Y. and Omura, S., Isolation of new actinomycete strains for the screening of new bioactive compounds. J. Gen. Appl. Microbiol., 2003, 49, 141–154.
  • Chung, Y. R., Sung, K. C., Mo, H. K., Son, D. Y., Nam, J. S., Chun, J. and Bae, K. S., Kitasatospora cheerisanensis sp. nov., a new species of the genus Kitasatospora that produces an antifungal agent. Int. J. Syst. Bacteriol., 1999, 49, 753–758.
  • Yang, S. et al., New antibiotic Sch 725424 and its dehydration product Sch 725428 from Kitasatospora sp. J. Antibiot., 2005, 58, 192–195.
  • Momose, I. et al., Tyropeptins A and B, new proteasome inhibitors produced by Kitasatospora sp. MK993-dF2. I. Taxonomy, isolation, physio-chemical properties and biological activities. J. Antibiot., 2001, 54, 997–1003.
  • Maeda, M., Kodama, T., Iwasawa, N., Higuchi, N. and Amano, N., Production of aspartic proteinase inhibitor by Kitasatospora kyotoensis. European Patent EP 0316907 A2, 1989.
  • Oda, K., Fukuda, Y., Murao, S., Uchida, K. and Kainosho, M., A novel proteinase inhibitor, tyrostatin, inhibiting some pepstatininsenstive carboxyl proteinase. Agric. Biol. Chem., 1989, 53, 405– 415.
  • Chang, T. and Tseng, M., Preliminary screening of soil actinomycetes for anti-tyrosinase activity. J. Mar. Sci. Technol., 2006, 14, 190–193.
  • Singh, L. S., Mazumder, S. and Bora, T. C., Optimisation of process parameters for growth and bioactive metabolite produced by a salt-tolerant and alkaliphilic actinomycete, Streptomyces tanashiensis strain A2D. J. Mycol. Méd., 2009, 19, 225–233.
  • Anjum, M. F., Tasadduq, I. and Al-Sultan, K., Response surface methodology: a neural network approach. Eur. J. Oper. Res., 1997, 101, 65–73.
  • Bas, D. and Boyac, I. S., Modeling and optimization I: usability of response surface methodology. J. Food Eng., 2007, 78, 836–845.
  • Akhnazarova, S. and Kefarov, V., Experiment Optimization in Chemistry and Chemical Engineering, Mir Publishers, Moscow, 1982.
  • Lim, S. D. and Kim, K. S., Optimization of tyrosinase inhibitory activity in the fermented milk by Lactobacillus plantarum M23. Korean J. Food Sci. An., 2012, 32, 678–684.

Abstract Views: 298

PDF Views: 113




  • Enhancing the Anti-Tyrosinase Activity of a Hypersaline Kitasatospora Sp. Sbsk430 by Optimizing the Medium Components

Abstract Views: 298  |  PDF Views: 113

Authors

Michelle S. Fernandes
Department of Biotechnology, Goa University, Goa 403 206, India
Savita Kerkar
Department of Biotechnology, Goa University, Goa 403 206, India

Abstract


Tyrosinase inhibitors from natural resources have been gaining importance in pharmaceutical and horticultural applications. A full factorial central composite design was used to study the interactive effect of three variables, i.e. D-mannitol, yeast extract and sodium chloride of the fermentation medium for maximizing anti-tyrosinase activity (75.5%) of a hypersaline actinobacteria, Kitasatospora sp. SBSK430. A quadratic model was found to fit the anti-tyrosinase activity (R2 = 0.948). Response surface analysis revealed that the optimum values of the medium components were 15 g/l D-mannitol, 5.6 g/l yeast extract and 1.2 g/l sodium chloride. Tyrosinase inhibition activity was enhanced 1.1-fold, using this approach.

Keywords


Actinobacteria, Anti-Tyrosinase, Fermentation Medium, Hypersaline, Kitasatospora sp.

References





DOI: https://doi.org/10.18520/cs%2Fv116%2Fi4%2F649-653