Open Access
Subscription Access
Enhancing the Anti-Tyrosinase Activity of a Hypersaline Kitasatospora Sp. Sbsk430 by Optimizing the Medium Components
Tyrosinase inhibitors from natural resources have been gaining importance in pharmaceutical and horticultural applications. A full factorial central composite design was used to study the interactive effect of three variables, i.e. D-mannitol, yeast extract and sodium chloride of the fermentation medium for maximizing anti-tyrosinase activity (75.5%) of a hypersaline actinobacteria, Kitasatospora sp. SBSK430. A quadratic model was found to fit the anti-tyrosinase activity (R2 = 0.948). Response surface analysis revealed that the optimum values of the medium components were 15 g/l D-mannitol, 5.6 g/l yeast extract and 1.2 g/l sodium chloride. Tyrosinase inhibition activity was enhanced 1.1-fold, using this approach.
Keywords
Actinobacteria, Anti-Tyrosinase, Fermentation Medium, Hypersaline, Kitasatospora sp.
User
Font Size
Information
- Terashita, T., Kono, M. and Murao, S., Promoting effect of S-PI on fruiting of Lentinus edodes. Trans. Mycol. Soc. Jpn., 1980, 21, 137–140.
- Kim, Y. J. and Uyama, H., Tyrosinase inhibitors from natural and synthetic sources: structure, inhibition mechanism and perspective for the future. Cell Mol. Life Sci., 2005, 62, 1707–1723.
- Lin, J. W., Chiang, H. M., Lin, Y. C. and Wen, K. C., Natural products with skin-whitening effects. J. Food Drug Anal., 2008, 16, 1–10.
- Bode, W. and Huber, R., Natural protein proteinase inhibitors and their interaction with proteinases. Eur. J. Biochem., 1992, 204, 433–451.
- Martinez, M. V. and Whitaker, J. R., The biochemistry and control of enzymatic browning. Trends Food Sci. Technol., 1995, 6, 195– 200.
- Okami, Y. and Okazaki, T., Studies on marine microorganisms. (1) Isolation from the sea. J. Antibiot., 1976, 25, 456–460.
- Ballav, S., Dastagar, S. G. and Kerkar, S., Biotechnological significance of actinobacterial research in India. Recent Res. Sci. Technol., 2012, 4, 31–39.
- Manivasagan, P., Venkatesan, J., Sivakumar, K. and Kim, S. K., Marine actinobacterial metabolites: current status and future perspectives. Microbiol. Res., 2013, 168, 311–332.
- Sosio, M., Bossi, E., Bianchi, A. and Donadio, S., Multiple peptide synthetase gene clusters in actinomycetes. Mol. Gen. Genet., 2000, 264, 213–221.
- Bently, S. D., Chater, A. M., Cerdeno-Tarranga, C. and Thomson, N. R., Complete genome sequence of the model actinomycete Streptomyces coelicolor A3 (2). Nature, 2002, 417, 141–147.
- Bull, A. T., Ward, A. C. and Goodfellow, M., Search and discovery strategies for biotechnology: the paradigm shift. Mol. Biol. Rev., 2000, 64, 573–606.
- Imada, C., Enzyme inhibitors and other bioactive compounds from marine actinomycetes. Antonie Van Leeuwenhoek., 2005, 87, 59– 63.
- Umezawa, H., Enzyme Inhibitors of Microbial Origin, University Park Press, Baltimore, USA, 1972.
- Dharmaraj, S., Marine streptomyces as a novel source of bioactive substances. World J. Microbiol. Biotechnol., 2010, 26, 2123–2139.
- Subramani, R. and Aalbersberg, W., Marine actinomycetes: an ongoing source of novel bioactive metabolites. Microbiol. Res., 2012, 167, 571–580.
- Chang, T., An updated review of tyrosinase inhibitors. Int. J. Mol. Sci., 2009, 10, 2440–2475.
- Loizzo, M. R., Tundis, R. and Mecnichini, F., Natural and synthetic tyrosinase inhibitors as antibrowning agents: an update. Compr. Rev. Food Sci. Food Saf., 2012, 11, 378–398.
- Chen, C., Lin, L., Yang, W., Bordon, J. and Wang, H., An updated organic classification of tyrosinase inhibitors on melanin biosynthesis. Curr. Org. Chem., 2015, 19, 4–18.
- Fernandes, M. S. and Kerkar, S., Microorganisms as a source of tyrosinase inhibitors: a review. Ann. Microbiol., 2017, 67, 343– 358.
- Takahashi, Y., Seino, A., Iwai, Y. and Omura, S., Taxonomic study and morphological differentiation of an actinomycete genus, Kitasatospora. Zentralbl. Bakteriol., 1999, 289, 265–284.
- Yoon, T. M., Kim, J. W., Kim, J. G., Kim, W. G. and Suh, J. W., Talosins A and B: new isoflavonol glycosides with potent antifungal activity from Kitasatospora kifunensis MJM341. J. Antibiot., 2006, 59, 633–639.
- Shi, N., Lu, C., Ho, C. C. and Shen, Y., Kitasatodine and kitasatopenoid from Kitasatospora sp. H6549, a new strain from Malaysia. Rec. Nat. Prod., 2013, 7, 1–5.
- Gill, K. A., Berrue, F., Arens, J. C., Carr, G. and Kerr, R., Cystargolides, 20S proteasome inhibitors isolated from Kitasatospora cystarginea. J. Nat. Prod., 2015, 78, 822–826.
- Takahashi, Y. and Omura, S., Isolation of new actinomycete strains for the screening of new bioactive compounds. J. Gen. Appl. Microbiol., 2003, 49, 141–154.
- Chung, Y. R., Sung, K. C., Mo, H. K., Son, D. Y., Nam, J. S., Chun, J. and Bae, K. S., Kitasatospora cheerisanensis sp. nov., a new species of the genus Kitasatospora that produces an antifungal agent. Int. J. Syst. Bacteriol., 1999, 49, 753–758.
- Yang, S. et al., New antibiotic Sch 725424 and its dehydration product Sch 725428 from Kitasatospora sp. J. Antibiot., 2005, 58, 192–195.
- Momose, I. et al., Tyropeptins A and B, new proteasome inhibitors produced by Kitasatospora sp. MK993-dF2. I. Taxonomy, isolation, physio-chemical properties and biological activities. J. Antibiot., 2001, 54, 997–1003.
- Maeda, M., Kodama, T., Iwasawa, N., Higuchi, N. and Amano, N., Production of aspartic proteinase inhibitor by Kitasatospora kyotoensis. European Patent EP 0316907 A2, 1989.
- Oda, K., Fukuda, Y., Murao, S., Uchida, K. and Kainosho, M., A novel proteinase inhibitor, tyrostatin, inhibiting some pepstatininsenstive carboxyl proteinase. Agric. Biol. Chem., 1989, 53, 405– 415.
- Chang, T. and Tseng, M., Preliminary screening of soil actinomycetes for anti-tyrosinase activity. J. Mar. Sci. Technol., 2006, 14, 190–193.
- Singh, L. S., Mazumder, S. and Bora, T. C., Optimisation of process parameters for growth and bioactive metabolite produced by a salt-tolerant and alkaliphilic actinomycete, Streptomyces tanashiensis strain A2D. J. Mycol. Méd., 2009, 19, 225–233.
- Anjum, M. F., Tasadduq, I. and Al-Sultan, K., Response surface methodology: a neural network approach. Eur. J. Oper. Res., 1997, 101, 65–73.
- Bas, D. and Boyac, I. S., Modeling and optimization I: usability of response surface methodology. J. Food Eng., 2007, 78, 836–845.
- Akhnazarova, S. and Kefarov, V., Experiment Optimization in Chemistry and Chemical Engineering, Mir Publishers, Moscow, 1982.
- Lim, S. D. and Kim, K. S., Optimization of tyrosinase inhibitory activity in the fermented milk by Lactobacillus plantarum M23. Korean J. Food Sci. An., 2012, 32, 678–684.
Abstract Views: 299
PDF Views: 113