Open Access Open Access  Restricted Access Subscription Access

Proton Gradient Regulator 5 of Gossypium arboreum Enhances Salt-Stress Tolerance in Gossypium hirsutum


Affiliations
1 Department of Botany, Division of Science and Technology, University of Education, Township, Lahore, Pakistan
2 College of Nursing, Umm Al Qura University, Makkah-715, Saudi Arabia
3 Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
4 Department of Biotechnology, University of Central Punjab, Lahore, India
 

Cotton is the most important cash and fibrous crop, and is grown in more than 50 countries of the world. Cotton crop yield is seriously affected by soil salinity. This deleterious effect can be reduced by genetic modification in stress-susceptible cotton plants. Salt stress tolerant gene gaPGR5 (proton gradient regulator 5) was isolated from Gossypium arboreum and transformed into the stress-susceptible cotton cultivar (G. hirsutum). The gaPGR5 gene was cloned into pCAMBIA- 1301 vector and transformed in young embryos by Agrobacterium-mediated method. Plant GUS gene was used as reporter gene that showed blue colouration during histochemical assay. Molecular analysis of transgenic plants was done up to T2 generation. Selection of salt-tolerant transgenic plants was done by salt-stress (NaCl) treatment with different concentrations in a hydroponic culture. Transgene expression in salt-tolerant transgenic plants was evaluated through quantitative real-time PCR. Maximum transgene expression was recorded in those plants which were tolerant to higher salt concentration (175 mM NaCl) and vice versa. The plants which give higher transgene expression against salt stress are valuable for cultivation in salt-affected areas.

Keywords

Gossypium arboreum, Gossypium hirsutum, Proton Gradient Regulator, Salt-Stress Tolerance.
User
Notifications
Font Size

  • Ahmad, R. T., Malik, T. A., Khan, I. A. and Jaskani, M. J. A., Genetic analysis of some morpho-physiological traits related to drought stress in cotton (Gossypium hirsutum). Int. J. Agric. Biol., 2009, 11, 235–240.
  • Bray, E. A., Bailey-Serres, J. and Weretilny, K. E., Responses to abiotic stresses. In Biochemistry and Molecular Biology of Plants (eds Gruissem, W., Buchannan, B. and Jones, R.), American Society of Plant Physiologists, Rockville, MD, USA, 2000, pp. 1158–1249.
  • Ashraf, M., Salt tolerance of cotton: some new advances. Crit. Rev. Plant Sci., 2002, 21, 1–32.
  • Sakhanokho, H. F., Zipf, A., Rajesekaran, K., Saha, S., Sharma, G. C. and Chee, P. W., Somatic embryo initiation and germination in diploid cotton (Gossypium arboreum L.). In Vitro Cell. Dev. Biol., 2004, 40, 177–181.
  • Li, F., Zhang, Y., Wang, M., Zhang, Y., Wu, X. and Guo, X., Molecular cloning and expression characteristics of alternative oxidase gene of cotton (Gossypium hirsutum). Mol. Biol. Rep., 2008, 35, 97–105.
  • Munekage, Y., Hojo, M., Meurer, J., Endo, T., Tasaka, M. and Shikanai, T., PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. Cell, 2002, 110, 361–371.
  • Munekage, Y., Hashimoto, M., Miyake, C., Tomizawa, K., Endo, T., Tasaka, M. and Shikanai, T., Cyclic electron flow around photosystem I is essential for photosynthesis. Nature, 2004, 429, 579–582.
  • Yeremenko, N. et al., Open reading frame ssr2016 is required for antimycin A-sensitive photosystem I driven cyclic electron flow in the Cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol., 2005, 46, 1433–1436.
  • Okegawa, Y., Long, T. A., Iwano, M., Takayama, S., Kobayashi, Y., Covert, S. F. and Shikanai, T., A balanced PGR5 level is required for chloroplast development and optimum operation of cyclic electron transport around photosystem I. Plant Cell Physiol., 2007, 48, 1462–1471.
  • Munekage, Y. and Shikanai, T., Cyclic electron transport through photosystem I. Plant Biotech., 2005, 22, 361–369.
  • Niu, X., Narasimhan, M. L., Salzman, R. A., Bressan, R. A. and Hasegawa, P. M., NaCl regulation of plasma membrane H+ATPase gene expression in a glycophyte and a halophyte. Plant Physiol., 1993, 103, 713–718.
  • Shahid, M. N. et al., Identification, characterization, and expression profiling of salt-stress tolerant proton gradient regulator 5 (PGR5) in Gossypium arboreum. Turk. J. Biol., 2016, 40, 889– 898.
  • Kiani, S., Mohamed, B. B., Shehzad, K., Jamal, A., Shahid, M. N., Shahid, A. A. and Husnain, T., Chloroplast-targeted expression of recombinant crystal-protein gene in cotton: an unconventional combat with resistant pests. J. Biotech., 2013, 166, 88–96.
  • Saha, S., Callahan, F. E., Douglas, A. D. and Creech, J. B., Localization of cotton tissue on quality of extractable DNA, RNA and protein. J. Cotton Sci., 1997, 1, 10–40.
  • Jaakola, L., Pirttila, A. M., Halonen, M. and Hohtola, A., Isolation of high quality RNA from bilberry (Vaccinium myrtillus L.) fruit. Mol. Biotechnol., 2001, 19, 201–203.
  • Martinez-Beltran, J. and Manzur, C. L., Overview of salinity problems in the world and FAO strategies to address the problem. In Proceedings of the International Salinity Forum, Riverside, California, USA, April 2005, pp. 311–313.
  • Smith, N., Kilpatrick, J. B. and Whitelam, G. C., Superfluous transgene integration in plants. Crit. Rev. Plant Sci., 2001, 20, 215–249.
  • Majeed, A., Husnain, T. and Riazuddin, S., Transformation of virus resistant genotype of Gossypium hirsutum L. with pesticidal gene. Plant Biotechnol., 2000, 17, 105–110.
  • Carmina Gisbert Ana, M. et al., The yeast HAL1 gene improves salt tolerance of transgenic tomato. Plant Physiol., 2000, 123, 393–402.
  • Jiang, L., Duan, L., Tian, X., Wang, B., Zhang, H., Zhang, M. and Li, Z., NaCl salinity stress decreased Bacillus thuringiensis (Bt) protein content of transgenic Bt cotton (Gossypium hirsutum L.) seedlings. Environ. Exp. Bot., 2006, 55, 315–320.
  • Khorsandi, F. and Anagholi, A., Reproductive compensation of cotton after salt stress relief at different growth stages. J. Agron. Crop Sci., 2009, 195, 278–283.
  • Jamal, A. et al., Water stress mediated changes in morphology and physiology of Gossypium arboreum (var FDH-786). Plant Sci., 2014, 2, 179–186.

Abstract Views: 375

PDF Views: 105




  • Proton Gradient Regulator 5 of Gossypium arboreum Enhances Salt-Stress Tolerance in Gossypium hirsutum

Abstract Views: 375  |  PDF Views: 105

Authors

Muhammad Naveed Shahid
Department of Botany, Division of Science and Technology, University of Education, Township, Lahore, Pakistan
Adil Jamal
College of Nursing, Umm Al Qura University, Makkah-715, Saudi Arabia
Sarfraz Kiani
Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
Javed Iqbal Wattoo
Department of Biotechnology, University of Central Punjab, Lahore, India
Bushra Rashid
Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
Tayyab Husnain
Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan

Abstract


Cotton is the most important cash and fibrous crop, and is grown in more than 50 countries of the world. Cotton crop yield is seriously affected by soil salinity. This deleterious effect can be reduced by genetic modification in stress-susceptible cotton plants. Salt stress tolerant gene gaPGR5 (proton gradient regulator 5) was isolated from Gossypium arboreum and transformed into the stress-susceptible cotton cultivar (G. hirsutum). The gaPGR5 gene was cloned into pCAMBIA- 1301 vector and transformed in young embryos by Agrobacterium-mediated method. Plant GUS gene was used as reporter gene that showed blue colouration during histochemical assay. Molecular analysis of transgenic plants was done up to T2 generation. Selection of salt-tolerant transgenic plants was done by salt-stress (NaCl) treatment with different concentrations in a hydroponic culture. Transgene expression in salt-tolerant transgenic plants was evaluated through quantitative real-time PCR. Maximum transgene expression was recorded in those plants which were tolerant to higher salt concentration (175 mM NaCl) and vice versa. The plants which give higher transgene expression against salt stress are valuable for cultivation in salt-affected areas.

Keywords


Gossypium arboreum, Gossypium hirsutum, Proton Gradient Regulator, Salt-Stress Tolerance.

References





DOI: https://doi.org/10.18520/cs%2Fv117%2Fi9%2F1505-1511