Open Access Open Access  Restricted Access Subscription Access

Xylooligosaccharides Production from Tobacco Stalk Xylan using Edible Acid


Affiliations
1 ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru 560 030, India
 

In the present study, a process was developed to hydrolyse xylan from tobacco stalks into xylooligosaccharides (XOS) by applying tartaric acid, an edible acid. The tobacco stalks contained approximately hemicelluloses (16.99%), cellulose (50.8%) and lignin (15.6%). Use of 8% KOH or NaOH under overnight incubation resulted in almost complete recovery of xylan from the tobacco stalks. Application of 1 M tartaric acid at 90°C hydrolysed xylan into XOS and the highest (0.357 mg/ml) yield of XOS was recorded after 120 minutes. Hence, prebiotic XOS could be produced from the tobacco stalk xylan by applying tartaric acid.

Keywords

Edible Acid, Tobacco Stalk, Xylan, Xylooligosaccharides.
User
Notifications
Font Size

  • Karkee, A., Optimization and cost analysis of lignocellulosic biomass feed stocks supply chains for biorefineries, Graduate theses and dissertations, 14996, 2016; http://lib.dr.iastate.edu/etd/14996 2. Samanta, A. K., Jayapal, N., Kolte, A. P., Senani, S., Sridhar, M., Suresh, K. P. and Sampath, K. T., Enzymatic production of xylooligosaccharides from alkali solubilized xylan of natural grass (Sehima nervosum). Bioresour. Technol., 2012, 112, 199–205.
  • Akpinar, O., Erdogan, K. and Bostanci, S., Production of xylooligosaccharides by controlled acid hydrolysis of lignocellulosic materials. Carbohydr. Res., 2009, 344, 660–666.
  • Aachary, A. A. and Prapulla, S. G., Xylooligosaccharides (XOS) as an emerging prebiotic: microbial synthesis, utilization, structural characterization, bioactive properties and applications. Comp. Rev. Food Sci. Food Saf., 2011, 10, 2–16.
  • Carvalho, A. F. A., Neto, P. O., Silva, D. F. and Pastore, G. M., Xylooligosaccharides from lignocellulosic materials: chemical structure, health benefits and production by chemical and enzymatic hydrolysis. Food Res. Int., 2013, 51, 75–85.
  • Samanta, A. K., Jayapal, N., Jayaram, C., Roy, S., Kolte, A. P., Senani, S. and Sridhar, M., Xylooligosaccharides as prebiotic from agricultural byproducts: Production and application. Bioact. Carbohydr. Dietary Fiber, 2015, 5, 62–71.
  • Saha, B. C., Hemicelluloses bioconversion. J. Ind. Microbiol. Biotechnol., 2003, 30, 279–291.
  • Nabarlatz, D., Montane, D., Kardosova, A., Bekesova, S., Hribalova, V. and Ebringerova, A., Almond shell xylooligosaccharides exhibiting immunostimulatory activity. Carbohydr. Res., 2007, 342, 1122–1128.
  • Sabiha-Hanim, S., Noor, M. A. M. and Rosma, A., Effect of autohydrolysis and enzymatic treatment on oil palm (Elaesis guineensis Jacq.) frond fibres for xylose and xylooligosaccharides production. Bioresour. Technol., 2011, 102, 1234–1239.
  • Kallela, F., Drissa, D., Bouaziza, F., Neiferb, M., Ghorbela, R. and Chaabounia, S. E., Production of xylooligosaccharides from garlic straw xylan by purified xylanase from Bacillus mojavensis UEB–FK and their in vitro evaluation as prebiotics. Food Bioprod. Process., 2015, 94, 536–546.
  • Davila, I., Gordobil, O., Labidi, J. and Gullon, P., Assessment of suitability of vine shoots for hemicellulosic oligosaccharides production through aqueous processing. Bioresour. Technol., 2016, 211, 636–644.
  • Akpinar, O., Ozlem, A. K., Kavas, A., Bakir, U. and Yilmaz, L., Enzymatic production of xylooligosaccharides from cotton stalks. J. Agric. Food Chem., 2007, 55, 5544–5551.
  • AOAC. Official Methods of Analysis, Association of Official Analytical Chemists, Washington DC, 2000, 17th edn.
  • Van Soest, P. J., Robertson, J. B. and Lewis, B. A., Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci., 1991, 74, 3583– 3597.
  • Somogyi, M., Notes on sugar determination. J. Biol. Chem., 1952, 195, 19–23.
  • Ruzene, D. S., Silva, P. D., Vicente, A. A., Goncalves, A. R. and Teixeira, J. A., An alternative application to the Portuguese agro industrial residue: wheat straw. Appl. Biochem. Biotechnol., 2008, 147, 85–96.
  • Cai, J., Bin, Li, Chen, C., Wang, J., Zhao, M. and Zhang, K., Hydrothermal carbonization of tobacco stalk for fuel application. Bioresour. Technol., 2016, 220, 305–311.
  • Costa, C. A. E., Coleman, W., Dube, M., Rodrigues, A. E. and Pinto, P. C. R., Assessment of key features of lignin from lignocellulosic crops: stalks and ischolar_mains of corn, cotton, sugarcane and tobacco. Ind. Crops Prod., 2016, 92, 136–148.
  • Kumar, P., Barrett, D. M., Delwiche, M. J. and Stroeve, P., Method for pre-treatment of lignocellulosic biomass for efficient hydrolysis and biofuels production. Ind. Eng. Chem. Res., 2009, 48, 3713–3729.
  • Naidu, D. S., Hlangothi, S. P. and John, M. J., Biobased products from xylan: a review. Carbohydr. Polym., 2018, 179, 28–41.
  • Behera, S., Arora, R., Nandhagopal, N. and Kumar, S., Importance of chemical pre-treatment for bioconversion of lignocellulosic biomass. Renew. Sust. Energ. Rev., 2014, 36, 91–106.
  • Doner, L. W. and Hicks, K. B., Isolation of hemicelluloses from corn fiber by hydrogen peroxide extraction. Cereal Chem., 1997, 74, 176–181.
  • Ebringerova, A. and Heize, T., Xylan and xylan derived biopolymers with valuable properties.1. Naturally occurring xylans structures, procedures and properties. Macromol. Rapid Commun., 2000, 21, 542–556.
  • Peng, F., Ren, J. L., Xu, F., Bian, J., Peng, P. and Sun, R. C., Fractional studies of alkali soluble hemicelluloses obtained by graded ethanol precipitation from sugar cane bagasse. J. Agric. Food Chem., 2010, 58, 1768–1776.
  • Ebringerova, A. and Hromadkova, Z., Effect of ultrasound on the extractability of corn bran hemicelluloses. Ultrason. Sonochem., 2002, 9, 225–229.
  • Xiang, Y., Su, Z., Wang, K., Deng, L. and Jiang, J., Combination of low pressure steam explosion and alkaline peroxide pre-treatment for separation of hemicellulose. BioRes., 2014, 9, 3384– 3395.
  • Smil, V., Crop residues: Agriculture’s Largest Harvest Crop residues incorporate more than half of the world’s agricultural phytomass. Bioscience, 1999, 49, 299–308.
  • Brown, C., Martin, A. P. and Grof, C. P. L., The application of Fourier transforms mid-infrared (FTIR) spectroscopy to identify variation in cell wall composition of Setariaitalica ecotypes. J. Integr. Agric., 2017, 16, 1256–1267.
  • Kacurakova, M., Belton, P. S., Wilson, R. H., Hirsch, J. and Ebringerova, A., Hydration properties of xylan type structures: an FTIR study of xylooligosaccharides. J. Sci. Food Agric., 1998, 77, 38–44.
  • Goncalves, A. R. and Ruzene, D. S., Bleachability and characterization by Fourier Transform Infrared principal component analysis of acetosolv pulps obtained from sugarcane bagasse. Appl. Biochem. Biotechnol., 2001, 91–93, 63–70.
  • Sun, J. X., Sun, R., Sun, X. F. and Su, Y., Fractional and physicochemical characterization of hemicelluloses from ultrasonic irradiated sugarcane bagasse. Carbohydr. Res., 2004, 339, 291– 300.
  • Carvalho, D. M., Abad, A. M., Evtuguin, D. V., Colodette, J. L., Lindstrom, M. E., Vilaplana, F. and Sevastyanova, O., Isolation and characterization of acetylated glucuronoarabinoxylan from sugarcane bagasse and straw. Carbohydr. Polym., 2017, 156, 223– 234.
  • Xu, C., Leppanen, A. S., Eklund, P., Holmlund, P., Sjoholm, R., Sundberg, K. and Willfor, S., Acetylation and characterization of spruce (Picea abies) galactoglucomannans. Carbohydr. Res., 2010, 345, 810–816.
  • Chaikumpollert, O., Methacanon, P. and Suchiva, K., Structural elucidation of hemicelluloses from Vetiver grass. Crabohydr. Polym., 2004, 57, 191–196.
  • Gupta, S., Madan, R. N. and Bansal, M. C., Chemical composition of Pinus caribaea hemicellulose. Tappi J., 1987, 70, 113– 114.
  • Samanta, A. K., Senani, S., Kolte, A. P., Sridhar, M., Sampath, K. T., Jayapal, N. and Devi, A., Production and in vitro evaluation of xylooligosaccharides generated from corn cobs. Food Bioprod. Process., 2012, 90, 466–474.
  • Zhang, H., Zhou, X., Xu, Y. and Yu, S., Production of xylooligosaccharides from waste xylan, obtained from viscose fiber processing, by selective hydrolysis using concentrated acetic acid. J. Wood Chem. Technol., 2017, 37, 1–9.

Abstract Views: 389

PDF Views: 115




  • Xylooligosaccharides Production from Tobacco Stalk Xylan using Edible Acid

Abstract Views: 389  |  PDF Views: 115

Authors

A. K. Samanta
ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru 560 030, India
J. Chikkerur
ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru 560 030, India
Sohini Roy
ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru 560 030, India
A. P. Kolte
ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru 560 030, India
Manpal Sridhar
ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru 560 030, India
A. Dhali
ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru 560 030, India
K. Giridhar
ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru 560 030, India
S. Senani
ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru 560 030, India

Abstract


In the present study, a process was developed to hydrolyse xylan from tobacco stalks into xylooligosaccharides (XOS) by applying tartaric acid, an edible acid. The tobacco stalks contained approximately hemicelluloses (16.99%), cellulose (50.8%) and lignin (15.6%). Use of 8% KOH or NaOH under overnight incubation resulted in almost complete recovery of xylan from the tobacco stalks. Application of 1 M tartaric acid at 90°C hydrolysed xylan into XOS and the highest (0.357 mg/ml) yield of XOS was recorded after 120 minutes. Hence, prebiotic XOS could be produced from the tobacco stalk xylan by applying tartaric acid.

Keywords


Edible Acid, Tobacco Stalk, Xylan, Xylooligosaccharides.

References





DOI: https://doi.org/10.18520/cs%2Fv117%2Fi9%2F1521-1525