Open Access
Subscription Access
An Overview of AVIRIS-NG Airborne Hyperspectral Science Campaign Over India
The first phase of an airborne science campaign has been carried out with the Airborne Visible/Infrared Imaging Spectrometer Next Generation (AVIRIS-NG) imaging spectrometer over 22,840 sq. km across 57 sites in India during 84 days from 16 December 2015 to 6 March 2016. This campaign was organized under the Indian Space Research Organisation (ISRO) and National Aeronautics and Space Administration (NASA) joint initiative for HYperSpectral Imaging (HYSI) programme. To support the campaign, synchronous field campaigns and ground measurements were also carried out over these sites spanning themes related to crop, soil, forest, geology, coastal, ocean, river water, snow, urban, etc. AVIRIS-NG measures the spectral range from 380 to 2510 nm at 5 nm sampling with a ground sampling distance ranging from 4 to 8 m and flight altitude of 4–8 km. On-board and ground-based calibration and processing were carried out to generate level 0 (L0) and level 1 (L1) products respectively. An atmospheric correction scheme has been developed to convert the measured radiances to surface reflectance (level 2). These spectroscopic signatures are intended to discriminate surface types and retrieve physical and compositional parameters for the study of terrestrial, aquatic and atmospheric properties. The results from this campaign will support a range of objectives, including demonstration of advanced applications for societal benefits, validation of models/techniques, development of state-of-the-art spectral libraries, testing and refinement of automated tools for users, and definition of requirements for future space-based missions that can provide this class of measurements routinely for a range of important applications.
Keywords
Airborne Science Campaign, Hyperspectral Sensing, Imaging Spectrometer, Surface Reflectance.
User
Font Size
Information
- Bhattacharya, B. K. and Chattopadhyay, C., A multi-stage tracking for mustard rot disease combining surface meteorology and satellite remote sensing. Comput. Electron. Agric., 2013, 90, 35– 44.
- Bhattacharya, S., Majumdar, T. J., Rajawat, A. S., Panigrahy, M. K. and Das, P. R., Utilization of Hyperion data over Dongargarh, India, for mapping altered/weathered and clay minerals along with field spectral measurements. Int. J. Remote Sensing, 2012, 33(17), 5438–5450.
- Ramakrishnan, D. and Bharti, R., Hyperspectral remote sensing and geological applications. Curr. Sci., 2015, 108(5), 879–891.
- Sahoo, R. N., Ray, S. S. and Manjunath, K. R., Hyperspectral remote sensing of agriculture. Curr. Sci., 2015, 108(5), 848–859.
- Das, B. S., Sarathjith, M. C., Santra, P., Sahoo, R. N., Srivastava, R., Routray, A. and Ray, S. S., Hyperspectral remote sensing: opportunities, status and challenges for rapid soil assessment in India. Curr. Sci., 2015, 108(5), 860–868.
- Ramakrishnan, D. and Sahoo, R. N., Network Programme on Imaging Spectroscopy and Applications (NISA): science plan and implementation strategy. Department of Science and Technology, Government of India, 2016.
- Ajay Kumar, K., Thap, N. A. and Kuriakose, S. A., Advances in spaceborne hyperspectral imaging systems. Curr. Sci., 2015, 108(5), 826–832.
- Green, R. O. et al., Imaging spectroscopy and the airborne visible/ infrared imaging spectrometer (AVIRIS). Remote Sensing Environ., 1998, 65(3), 227–248.
- Green, R. O. et al., The Moon Mineralogy Mapper (M3) imaging spectrometer for lunar science: instrument description, calibration, on-orbit measurements, science data calibration and on-orbit validation. J. Geophys. Res.: Planets, 2012, 116(E10).
- Anonymous, Thriving on Our Changing Planet: A Decadal Strategy for Earth Observation from Space, 2017–2027 Decadal Survey for Earth science and applications from space. The National Academies of Science, Engineering and Medicine (ISBN 978-0-30946757-5). The National Academies Press, Washington, DC, USA, 2017; doi:10.17226/24938.
Abstract Views: 441
PDF Views: 136