Open Access Open Access  Restricted Access Subscription Access

Retrieval of Atmospheric Parameters and Data-Processing Algorithms forAVIRIS-NG Indian Campaign Data


Affiliations
1 Space Applications Centre, Indian Space Research Organisation, Ahmedabad 380 015, India
2 Department of Geography, University of Utah, Salt Lake City, UT, United States
 

Applications of high-spatial resolution imaging spectrometer data acquired from the Airborne Visible/ Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) under India campaign 2015–16, require a thorough compensation for atmospheric absorption and scattering. The data-processing algorithms used for retrieving critically important atmospheric parameters, namely ‘water vapour and aerosol optical depth (AOD)’ over land and water surfaces are presented. Over land surfaces, the dark dense vegetation method and radiative transfer modelling are used for deriving spectral AOD for boxes of 20 × 20 pixels. For AOD retrieval over water surfaces, dark-target approximation is used with near-infrared and shortwave infrared measurements. Estimation of precipitable water vapour is carried out using short-wave hyperspectral measurements for each pixel. A differential absorption technique (continuum interpolated band ratio) has been used for this purpose. The retrieved AOD and water vapour values were compared with in situ sun-photometer and radiosonde data respectively, indicating good matches. Further, these parameters were used to derive ‘atmospherically corrected surface reflectance and remote sensing reflectance’, for land and water surface respectively, assuming horizontal surfaces having Lambertian reflectance.

Keywords

Aerosol, Atmospheric Correction, Hyperspectral Imaging, Surface Reflectance, Water Vapour.
User
Notifications
Font Size

  • Vane, G., Green, R. O., Chrien, T. G., Enmark, H. T., Hansen, E. G. and Porter, W. M., The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). Remote Sensing Environ., 1993, 44(2–3), 127–143; doi:10.1016/ S0034-4257 (93)90012-M.
  • Green, R. O. et al., Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). Remote Sensing Environ., 1998, 65(3), 227–248; doi:10.1016/S0034-4257 (98)0064-9.
  • Hamlin, L., Green, R. O., Mouroulis, P., Eastwood, M., Wilson, D., Dudik, M. and Paine, C., Imaging spectrometer science measurements for terrestrial ecology: AVIRIS and new developments. In IEEE Aerospace Conference Proceeding, 2011, pp. 1–7; http://dx.doi.org/10.1109/AERO.2011.5747395.
  • Gao, B. C. and Goetz, A. F., Column atmospheric water vapor and vegetation liquid water retrievals from airborne imaging spectrometer data. J. Geophys. Res. – Atmos., 1990, 95(D4), 3549–3564.
  • Adler-Golden, S. M. et al., Atmospheric correction for short-wave spectral imagery based on MODTRAN4. SPIE Proc. Imag. Spectrom., 1999, 3753, 61–69.
  • Etheridge, D. M., Steele, L. P., Langenfelds, R. L., Francey, R. J., Barnola, J.-M. and Morgan, V. I., Natural and anthropogenic hanges in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. J. Geophys. Res., 1996, 101, 4115–4128.
  • Leung, D. Y. C., Caramanna, G. and Maroto-Valer, M. M., An overview of current status of carbon dioxide capture and storage technologies. Renew. Sust. Energ. Rev., 2014, 39, 426–443.
  • Wunch, D. et al., Comparisons of the Orbiting Carbon Observatory-2 (OCO-2) XCO2 measurements with TCCON. Atmos. Meas. Tech., 2017, 10, 2209–2238.
  • Bovensmann, H., Burrows, J. P., Buchwitz, M., Frerick, J., Noel, S. and Rozanov, V. V., SCIAMACHY: mission objectives and measurement modes. J. Atmos. Sci., 1999, 5, 127–150.
  • Hamazaki, T., Kaneko, Y. and Kuze, A., Carbon dioxide monitoring from the GOSAT satellite. In Proceedings of XX ISPRS Conference, Istanbul, Turkey, 12–13 July 2004, pp. 3–5.
  • Frankenberg, C. et al., The Orbiting Carbon Observatory (OCO2): spectrometer performance evaluation using pre-launch direct sun measurements. Atmos. Meas. Tech., 2015, 8, 301–313.
  • Tadic, J. M. et al., A comparison of in situ aircraft measurements of carbon dioxide and methane to GOSAT data measured over railroad Valley Playa, Nevada, USA. IEEE Trans. Geosci. Remote Sensing, 2014, 52, 7764–7774.
  • Green, R. O., Measuring the spectral expression of carbon dioxide in the solar reflected spectrum with AVIRIS. In Proceedings of the 11th Annual Airborne Earth Science Workshop, Jet Propulsion Laboratory, Pasadena, CA, USA, 2001.
  • Dennison, P. E. et al., High spatial resolution mapping of elevated atmospheric carbon dioxide using airborne imaging spectroscopy: radiative transfer modeling and power plant plume detection. Remote Sensing Environ., 2013, 139, 116–129.
  • Thorpe, A. K. et al., Airborne DOAS retrievals of methane, carbon dioxide, and water vapor concentrations at high spatial resolution: application to AVIRIS-NG. Atmos. Meas. Tech., 2017, 10, 3833–3850.
  • Kotchenova, S. Y., Vermote, E. F., Matarrese, R. and Klemm Jr, F. J., Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: Path radiance. Appl. Opt., 2006, 45(26), 6762.
  • Lenoble, J., Radiative Transfer in Scattering and Absorbing Atmospheres: Standard Computational Procedures, A. Deepak Publishing, Hampton, VA.
  • Tanre, D. et al., Simulation of the Satellite Signal in the Solar Spectrum (5S), User’s Guide, Laboratoire d’Optique Atmospherique, U.S.T. de Lille, 59655 Villeneuve dáscq, France, 1986.
  • Vermote, E. F., Tanre, D., Deuze, J. L., Herman, M. and Morcrette, J. J., Second simulation of the satellite signal in the solar spectrum, 6S: an overview. IEEE Trans. Geosci. Remote Sensing, 1997, 35(3), 675.
  • Kaufman, Y. J., Tanre, D. and Boucher, O., A satellite view of aerosols in the climate system. Nature, 2002, 419, 215–223.
  • Kaufman, Y. J. et al., Relationship between surface reflectance in the visible and mid-IR used in MODIS aerosol algorithm – theory. Geophys. Res. Lett., 2002, 29(23), 31-1–31-4.
  • Kaufman, Y. J. et al., The MODIS 2.1 μm channel – correlation with visible reflectance for use in remote sensing of aerosol. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(5), 1286–1298.
  • Hsu, N. C. et al., Enhanced deep-blue aerosol retrieval algorithm: the second generation. J. Geophys. Res.: Atmos., 2013, 118, 9296– 9315; https://doi.org/10.1002/jgrd.50712.
  • Mishra, M. K., Retrieval of aerosol optical depth from INSAT-3D imager over Asian landmass and adjoining ocean: retrieval uncertainty and validation. J. Geophys. Res.: Atmosp., 2018, 123; https://doi.org/10.1029/2017JD028116.
  • Bruegge, C. J. et al., In situ atmospheric water-vapor retrieval in support of AVIRIS validation. Proc. SPIE, 1990, 1298, 150– 163.
  • Fowle F. E., The spectroscopic determination of aqueous vapour. Astrophys. J., 1912, 35, 149–162.
  • Frouin, R., Deschamps, Pierre-Yves and Lecomte, P., Determination from space of atmospheric total water vapor amounts by differential absorption near 940 nm: theory and airborne verification. J. Appl. Meteorol., 1990, 29, 448–460.
  • Berk, A., Bernstein, L. S. and Robertson, D. C., MODTRAN: a moderate resolution model for LOWTRAN7. GL-TR-89-0122. Air Force Geophysical Laboratory, Hanscom AFB, MA, 1989, p. 38.
  • Gordon, H. R., Brown, J. W. and Evans, R. H., Exact Rayleigh scattering calculations for use with the Nimbus 7 coastal zone color scanner. Appl. Opt., 1988, 27, 862–871.
  • Gordon, H. R., Atmospheric correction of ocean color imagery in the Earth Observing System era. J. Geophys. Res., 1997, 102, 17081–17106.

Abstract Views: 334

PDF Views: 134




  • Retrieval of Atmospheric Parameters and Data-Processing Algorithms forAVIRIS-NG Indian Campaign Data

Abstract Views: 334  |  PDF Views: 134

Authors

Manoj K. Mishra
Space Applications Centre, Indian Space Research Organisation, Ahmedabad 380 015, India
Anurag Gupta
Space Applications Centre, Indian Space Research Organisation, Ahmedabad 380 015, India
Jinya John
Space Applications Centre, Indian Space Research Organisation, Ahmedabad 380 015, India
Bipasha P. Shukla
Space Applications Centre, Indian Space Research Organisation, Ahmedabad 380 015, India
Philip Dennison
Department of Geography, University of Utah, Salt Lake City, UT, United States
S. S. Srivastava
Space Applications Centre, Indian Space Research Organisation, Ahmedabad 380 015, India
Nitesh K. Kaushik
Space Applications Centre, Indian Space Research Organisation, Ahmedabad 380 015, India
Arundhati Misra
Space Applications Centre, Indian Space Research Organisation, Ahmedabad 380 015, India
D. Dhar
Space Applications Centre, Indian Space Research Organisation, Ahmedabad 380 015, India

Abstract


Applications of high-spatial resolution imaging spectrometer data acquired from the Airborne Visible/ Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) under India campaign 2015–16, require a thorough compensation for atmospheric absorption and scattering. The data-processing algorithms used for retrieving critically important atmospheric parameters, namely ‘water vapour and aerosol optical depth (AOD)’ over land and water surfaces are presented. Over land surfaces, the dark dense vegetation method and radiative transfer modelling are used for deriving spectral AOD for boxes of 20 × 20 pixels. For AOD retrieval over water surfaces, dark-target approximation is used with near-infrared and shortwave infrared measurements. Estimation of precipitable water vapour is carried out using short-wave hyperspectral measurements for each pixel. A differential absorption technique (continuum interpolated band ratio) has been used for this purpose. The retrieved AOD and water vapour values were compared with in situ sun-photometer and radiosonde data respectively, indicating good matches. Further, these parameters were used to derive ‘atmospherically corrected surface reflectance and remote sensing reflectance’, for land and water surface respectively, assuming horizontal surfaces having Lambertian reflectance.

Keywords


Aerosol, Atmospheric Correction, Hyperspectral Imaging, Surface Reflectance, Water Vapour.

References





DOI: https://doi.org/10.18520/cs%2Fv116%2Fi7%2F1089-1100