The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


Advancements in hyperspectral remote sensing technology have opened new avenues to explore innovative ways to map crops in terms of area and health. To study precise mapping of agriculture and horticulture crops along with biophysical and biochemical constituents at field scale, an airborne AVIRIS-NG hyperspectral imaging has been conducted in various agro-climatic regions representing diverse agricultural types of India. Crop classification with available and developed algorithms has been applied over homogeneous and heterogeneous agriculture and horticulture cropped areas. The spectral angle mapper and maximum likelihood algorithms showed classification accuracy of 77%–94% for AVIRI-NG and 42%–55% for LISS IV. The customized deep neural network and maximum noise function (MNF)-based classification schemes showed an accuracy of 93% and 86% for mapping of agriculture and horticulture crops respectively. The forward and inversion of canopy radiative transfer model protocol was developed for retrieval of crop parameters such as leaf area index (LAI) and chlorophyll content (Cab) using AVIRIS-NG narrow bands. The retrieved LAI and Cab showed 19%–27% and 23%–29% deviation from measured mean for homogeneous and heterogeneous agricultural areas respectively. Red edge position index-based empirical model and multivariate linear regression of multiple indices showed maximum correlation of 0.62 and 0.93 respectively, to map leaf nitrogen content. Water condition index was developed using vegetation and water indices to distinguish crop water-based abiotic stress. Wheat yellow rust disease has been identified at field scale using absorption band depth analysis at 662–702 and 2155–2175 nm, and further applied to AVIRIS-NG data to detect biotic stress at spatial scale. This study establishes that such missions have the potential to boost accurate mapping of economically valuable minor crops and generate health indicators to distinguish biotic and abiotic stresses at field scale.

Keywords

Assessment, Biotic and Abiotic Stress, Crop Classification, Health, Hyperspectral Imaging.
User
Notifications
Font Size