Open Access Open Access  Restricted Access Subscription Access

Taming the Master:SWI/SNF Chromatin Remodeller as a Therapeutic Target in Cancer


Affiliations
1 Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Inner Ring Road, Uppal, Hyderabad 500 039, India
2 Manipal Academy of Higher Education, Manipal 576 104, India
 

Eukaryotic cells use histone modifiers and chromatin remodellers to facilitate protein DNA interactions in the nucleus; an important requisite for regulating several cardinal nuclear processes including transcription, replication, DNA repair and recombination, etc. The SWI/SNF complex is the most well-studied chromatin remodeller and is conserved from yeast to mammals. The complex is recruited to specific DNA sites, where it uses energy from ATP hydrolysis to catalyse nucleosome sliding or histone eviction from DNA. Mutational inactivation of SWI/SNF components has been identified in neurological syndromes and in several cancers. Recent deep sequencing studies have revealed a SWI/SNF mutation frequency of 20% in cancer genomes. In addition to mutations in tumour samples, extensive studies on cell lines and animal models have revealed tumour suppressive features for many individual SWI/SNF components. Thus, components of the complex are classified as tumour suppressors. Interestingly, however, majority of mutations cause incomplete inactivation of the complex, leaving behind a ‘residual’ complex that can be targeted for therapy. In addition, characterization of multiple roles of SWI/SNF components has revealed several therapeutic options. The current review summarizes the multi-faceted therapeutic opportunities for tumour bearing mutations in genes, encoding SWI/SNF components.

Keywords

ARID1A, Chromatin Remodeller, SWI/SNF, Therapeutic Targeting.
User
Notifications
Font Size

  • Narlikar, G. J., Fan, H. Y. and Kingston, R. E., Cooperation between complexes that regulate chromatin structure and transcription. Cell, 2002, 108, 475–487.
  • Wilson, B. G. and Roberts, C. W., Swi/snf nucleosome remodellers and cancer. Nat. Rev. Cancer, 2011, 11, 481–492.
  • Saha, A., Wittmeyer, J. and Cairns, B. R., Chromatin remodelling: the industrial revolution of DNA around histones. Nat. Rev. Mol. Cell Biol., 2006, 7, 437–447.
  • Ho, L., Jothi, R., Ronan, J. L., Cui, K., Zhao, K. and Crabtree, G. R., An embryonic stem cell chromatin remodelling complex, esbaf, is an essential component of the core pluripotency transcriptional network. Proc. Natl. Acad. Sci. USA, 2009, 106, 5187–5191.
  • Stern, M., Jensen, R. and Herskowitz, I., Five swi genes are required for expression of the ho gene in yeast. J. Mol. Biol., 1984, 178, 853–868.
  • Neigeborn, L. and Carlson, M., Genes affecting the regulation of suc2 gene expression by glucose repression in saccharomyces cerevisiae. Genetics, 1984, 108, 845–858.
  • Cairns, B. R., Kim, Y. J., Sayre, M. H., Laurent, B. C. and Kornberg, R. D., A multisubunit complex containing the swi1/adr6, swi2/snf2, swi3, snf5, and snf6 gene products isolated from yeast. Proc. Natl. Acad. Sci. USA, 1994, 91, 1950–1954.
  • Cote, J., Quinn, J., Workman, J. L. and Peterson, C. L., Stimulation of gal4 derivative binding to nucleosomal DNA by the yeast swi/snf complex. Science, 1994, 265, 53–60.
  • Cairns, B. R. et al., Rsc, an essential, abundant chromatinremodelling complex. Cell, 1996, 87, 1249–1260.
  • Collins, R. T., Furukawa, T., Tanese, N. and Treisman, J. E., Osa associates with the brahma chromatin remodelling complex and promotes the activation of some target genes. EMBO J., 1999, 18, 7029–7040.
  • Mohrmann, L., Langenberg, K., Krijgsveld, J., Kal, A. J., Heck, A. J. and Verrijzer, C. P., Differential targeting of two distinct swi/snf-related drosophila chromatin-remodelling complexes. Mol. Cell Biol., 2004, 24, 3077–3088.
  • Wang, W. et al., Purification and biochemical heterogeneity of the mammalian swi-snf complex. EMBO J., 1996, 15, 5370– 5382.
  • Yan, Z. et al., Pbaf chromatin-remodelling complex requires a novel specificity subunit, baf200, to regulate expression of selective interferon-responsive genes. Genes Dev., 2005, 19, 1662–1667.
  • Elfring, L. K. et al., Genetic analysis of brahma: The drosophila homolog of the yeast chromatin remodelling factor swi2/snf2. Genetics, 1998, 148, 251–265.
  • de la Serna, I. L., Carlson, K. A. and Imbalzano, A. N., Mammalian swi/snf complexes promote myod-mediated muscle differentiation. Nat. Genet., 2001, 27, 187–190.
  • Gresh, L. et al., The swi/snf chromatin-remodelling complex subunit snf5 is essential for hepatocyte differentiation. EMBO J., 2005, 24, 3313–3324.
  • Pedersen, T. A., Kowenz-Leutz, E., Leutz, A. and Nerlov, C., Cooperation between c/ebpalpha tbp/tfiib and swi/snf recruiting domains is required for adipocyte differentiation. Genes Dev., 2001, 15, 3208–3216.
  • Alpsoy, A. and Dykhuizen, E. C., Glioma tumour suppressor candidate region gene 1 (gltscr1) and its paralog gltscr1-like form swi/snf chromatin remodelling subcomplexes. J. Biol. Chem., 2018, 293, 3892–3903.
  • Michel, B. C. et al., A non-canonical swi/snf complex is a synthetic lethal target in cancers driven by baf complex perturbation. Nat. Cell Biol., 2018, 20, 1410–1420.
  • Phelan, M. L., Sif, S., Narlikar, G. J. and Kingston, R. E., Reconstitution of a core chromatin remodelling complex from swi/snf subunits. Mol. Cell, 1999, 3, 247–253.
  • Hargreaves, D. C. and Crabtree, G. R., Atp-dependent chromatin remodelling: Genetics, genomics and mechanisms. Cell Res., 2011, 21, 396–420.
  • Kadam, S. and Emerson, B. M., Transcriptional specificity of human swi/snf brg1 and brm chromatin remodelling complexes. Mol. Cell, 2003, 11, 377–389.
  • Raab, J. R., Resnick, S. and Magnuson, T., Genome-wide transcriptional regulation mediated by biochemically distinct swi/snf complexes. PLoS Genet., 2015, 11, e1005748.
  • Nagl Jr, N. G., Wang, X., Patsialou, A., Van Scoy, M. and Moran, E., Distinct mammalian swi/snf chromatin remodelling complexes with opposing roles in cell-cycle control. EMBO J., 2007, 26, 752–763.
  • Mashtalir, N. et al., Modular organization and assembly of swi/snf family chromatin remodelling complexes. Cell, 2018, 175, 1272–1288 e1220.
  • Lessard, J. et al., An essential switch in subunit composition of a chromatin remodelling complex during neural development. Neuron, 2007, 55, 201–215.
  • Priam, P., Krasteva, V., Rousseau, P., D'Angelo, G., Gaboury, L., Sauvageau, G. and Lessard, J. A., Smarcd2 subunit of swi/snf chromatin-remodelling complexes mediates granulopoiesis through a cebpvarepsilon dependent mechanism. Nat. Genet., 2017, 49, 753–764.
  • Puri, P. L. and Mercola, M., Baf60 a, b, and cs of muscle determination and renewal. Genes Dev., 2012, 26, 2673–2683.
  • Taverna, E. G. and Huttner, W. B., The cell biology of neurogenesis: Toward an understanding of the development and evolution of the neocortex. Annu. Rev. Cell Develop. Biol., 2014, 30, 38.
  • Bachmann, C. et al., Mswi/snf (baf) complexes are indispensable for the neurogenesis and development of embryonic olfactory epithelium. PLOS Genet., 2016, 12, e1006274.
  • Tuoc, T. C., Boretius, S., Sansom, S. N., Pitulescu, M. E., Frahm, J., Livesey, F. J. and Stoykova, A., Chromatin regulation by baf170 controls cerebral cortical size and thickness. Dev. Cell, 2013, 25, 256–269.
  • Van Houdt, J. K. et al., Heterozygous missense mutations in smarca2 cause nicolaides-baraitser syndrome. Nat. Genet., 2012, 44, 445–449, S441.
  • Biegel, J. A., Zhou, J. Y., Rorke, L. B., Stenstrom, C., Wainwright, L. M. and Fogelgren, B., Germ-line and acquired mutations of ini1 in atypical teratoid and rhabdoid tumours. Cancer Res., 1999, 59, 74–79.
  • Versteege, I. et al., Truncating mutations of hsnf5/ini1 in aggressive paediatric cancer. Nature, 1998, 394, 203–206.
  • Roberts, C. W., Leroux, M. M., Fleming, M. D. and Orkin, S. H., Highly penetrant, rapid tumourigenesis through conditional inversion of the tumour suppressor gene snf5. Cancer Cell, 2002, 2, 415–425.
  • Eaton, K. W., Tooke, L. S., Wainwright, L. M., Judkins, A. R. and Biegel, J. A., Spectrum of smarcb1/ini1 mutations in familial and sporadic rhabdoid tumours. Pediatr. Blood Cancer, 2011, 56, 7–15.
  • Kadoch, C. and Crabtree, G. R., Mammalian swi/snf chromatin remodelling complexes and cancer: Mechanistic insights gained from human genomics. Sci. Adv., 2015, 1, e1500447.
  • Shain, A. H. and Pollack, J. R., The spectrum of swi/snf mutations, ubiquitous in human cancers. PLoS ONE, 2013, 8, e55119.
  • Zehir, A. et al., Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat. Med., 2017, 23, 703–713.
  • Masliah-Planchon, J. B., Gindbretiere, J.-M., Bourdeaut, F. and Delattre, O., Swi/snf chromatin remodelling and human malignacies. Annu. Rev. Pathol., 2015, 10, 27.
  • Wu, J., He, K., Zhang, Y., Song, J., Shi, Z., Chen, W. and Shao, Y., Inactivation of smarca2 by promoter hypermethylation drives lung cancer development. Gene, 2018, 687, 193–199.
  • Marquez, S. B., Thompson, K. W., Lu, L. and Reisman, D., Beyond mutations: additional mechanisms and implications of swi/snf complex inactivation. Front Oncol., 2014, 4, 372.
  • Khursheed, M. et al., Arid1b, a member of the human swi/snf chromatin remodelling complex, exhibits tumour-suppressor activities in pancreatic cancer cell lines. Br. J. Cancer, 2013, 108, 2056–2062.
  • Trouche, D., Le Chalony, C., Muchardt, C., Yaniv, M. and Kouzarides, T., Rb and hbrm cooperate to repress the activation functions of e2f1. Proc. Natl. Acad. Sci. USA, 1997, 94, 11268– 11273.
  • Cheng, S. W., Davies, K. P., Yung, E., Beltran, R. J., Yu, J. and Kalpana, G. V., C-myc interacts with ini1/hsnf5 and requires the swi/snf complex for transactivation function. Nat. Genet., 1999, 22, 102–105.
  • Lee, D., Kim, J. W., Seo, T., Hwang, S. G., Choi, E. J. and Choe, J., Swi/snf complex interacts with tumour suppressor p53 and is necessary for the activation of p53-mediated transcription. J. Biol. Chem., 2002, 277, 22330–22337.
  • Oh, J., Sohn, D. H., Ko, M., Chung, H., Jeon, S. H. and Seong, R. H., Baf60a interacts with p53 to recruit the swi/snf complex. J. Biol. Chem., 2008, 283, 11924–11934.
  • Xu, Y., Yan, W. and Chen, X., Snf5, a core component of the swi/snf complex, is necessary for p53 expression and cell survival, in part through eif4e. Oncogene, 2010, 29, 4090–4100.
  • Guan, B., Wang, T. L. and Shih Ie, M., Arid1a, a factor that promotes formation of swi/snf-mediated chromatin remodelling, is a tumour suppressor in gynecologic cancers. Cancer Res., 2011, 71, 6718–6727.
  • Naidu, S. R., Love, I. M., Imbalzano, A. N., Grossman, S. R. and Androphy, E. J., The swi/snf chromatin remodelling subunit brg1 is a critical regulator of p53 necessary for proliferation of malignant cells. Oncogene, 2009, 28, 2492–2501.
  • Betz, B. L., Strobeck, M. W., Reisman, D. N., Knudsen, E. S. and Weissman, B. E., Re-expression of hsnf5/ini1/baf47 in pediatric tumour cells leads to g1 arrest associated with induction of p16ink4a and activation of rb. Oncogene, 2002, 21, 5193– 5203.
  • Inoue, H., Giannakopoulos, S., Parkhurst, C. N., Matsumura, T., Kono, E. A., Furukawa, T. and Tanese, N., Target genes of the largest human swi/snf complex subunit control cell growth. Biochem. J., 2011, 434, 83–92.
  • Tordella, L. et al., Swi/snf regulates a transcriptional program that induces senescence to prevent liver cancer. Genes Dev., 2016, 30, 2187–2198.
  • Xi, Q., He, W., Zhang, X. H., Le, H. V. and Massague, J., Genome-wide impact of the brg1 swi/snf chromatin remodeller on the transforming growth factor beta transcriptional program. J. Biol. Chem., 2008, 283, 1146–1155.
  • Ross, S., Cheung, E., Petrakis, T. G., Howell, M., Kraus, W. L. and Hill, C. S., Smads orchestrate specific histone modifications and chromatin remodelling to activate transcription. EMBO J., 2006, 25, 4490–4502.
  • Wilson, B. G. et al., Epigenetic antagonism between polycomb and swi/snf complexes during oncogenic transformation. Cancer Cell, 2010, 18, 316–328.
  • Kim, K. H. and Roberts, C. W., Mechanisms by which smarcb1 loss drives rhabdoid tumour growth. Cancer Genet., 2014, 207, 365–372.
  • Kohashi, K. and Oda, Y., Oncogenic roles of smarcb1/ini1 and its deficient tumours. Cancer Sci., 2017, 108, 547–552.
  • Orvis, T. et al., Brg1/smarca4 inactivation promotes non-small cell lung cancer aggressiveness by altering chromatin organization. Cancer Res., 2014, 74, 6486–6498.
  • Vorobyeva, N. E., Soshnikova, N. V., Nikolenko, J. V., Kuzmina, J. L., Nabirochkina, E. N., Georgieva, S. G. and Shidlovskii, Y. V., Transcription coactivator sayp combines chromatin remodeller brahma and transcription initiation factor tfiid into a single supercomplex. Proc. Natl. Acad. Sci. USA, 2009, 106, 11049–11054.
  • Alver, B. H. et al., The swi/snf chromatin remodelling complex is required for maintenance of lineage specific enhancers. Nat. Commun., 2017, 8, 14648.
  • Alexander, J. M., Hota, S. K., He, D., Thomas, S., Ho, L., Pennacchio, L. A. and Bruneau, B. G., Brg1 modulates enhancer activation in mesoderm lineage commitment. Development, 2015, 142, 1418–1430.
  • Bossen, C., Murre, C. S., Chang, A. N., Mansson, R., Rodewald, H. R. and Murre, C., The chromatin remodeller brg1 activates enhancer repertoires to establish b cell identity and modulate cell growth. Nat. Immunol., 2015, 16, 775–784.
  • Yu, Y. et al., Olig2 targets chromatin remodellers to enhancers to initiate oligodendrocyte differentiation. Cell, 2013, 152, 248–261.
  • Mathur, R. et al., Arid1a loss impairs enhancer-mediated gene regulation and drives colon cancer in mice. Nat. Genet., 2017, 49, 296–302.
  • Wang, X. et al., Smarcb1-mediated swi/snf complex function is essential for enhancer regulation. Nat. Genet., 2017, 49, 289– 295.
  • Shanbhag, N. M., Rafalska-Metcalf, I. U., Balane-Bolivar, C., Janicki, S. M. and Greenberg, R. A., Atm-dependent chromatin changes silence transcription in cis to DNA double-strand breaks. Cell, 2010, 141, 970–981.
  • Meisenberg, C. et al., Repression of transcription at DNA breaks requires cohesin throughout interphase and prevents genome instability. Mol. Cell, 2019, 73, 212–223 e217.
  • Tripathy, D. et al., Safety of treatment of metastatic breast cancer with trastuzumab beyond disease progression. J. Clin. Oncol., 2004, 22, 1063–1070.
  • Lynch, T. J. et al., Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med., 2004, 350, 2129–2139.
  • Paez, J. G. et al., Egfr mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science, 2004, 304, 1497– 1500.
  • Pao, W. et al., Egf receptor gene mutations are common in lung cancers from ‘never smokers’ and are associated with sensitivity of tumours to gefitinib and erlotinib. Proc. Natl. Acad. Sci. USA, 2004, 101, 13306–13311.
  • Shaw, A. T. and Engelman, J. A., Alk in lung cancer: past, present and future. J. Clin. Oncol., 2013, 31, 1105–1111.
  • Wiegand, K. C. et al., Arid1a mutations in endometriosisassociated ovarian carcinomas. N. Engl. J. Med., 2010, 363, 1532–1543.
  • Jones, S. et al., Frequent mutations of chromatin remodelling gene arid1a in ovarian clear cell carcinoma. Science, 2010, 330, 228–231.
  • Rodriguez-Nieto, S. et al., Massive parallel DNA pyrosequencing analysis of the tumour suppressor brg1/smarca4 in lung primary tumours. Hum. Mutat., 2011, 32, E1999–E2017.
  • Lee, R. S. et al., A remarkably simple genome underlies highly malignant pediatric rhabdoid cancers. J. Clin. Invest., 2012, 122, 2983–2988.
  • Bultman, S. J., Herschkowitz, J. I., Godfrey, V., Gebuhr, T. C., Yaniv, M., Perou, C. M. and Magnuson, T., Characterization of mammary tumours from brg1 heterozygous mice. Oncogene, 2008, 27, 460–468.
  • Guidi, C. J. et al., Disruption of ini1 leads to peri-implantation lethality and tumourigenesis in mice. Mol. Cell Biol., 2001, 21, 3598–3603.
  • Klochendler-Yeivin, A., Fiette, L., Barra, J., Muchardt, C., Babinet, C. and Yaniv, M., The murine snf5/ini1 chromatin remodelling factor is essential for embryonic development and tumour suppression. EMBO Rep., 2000, 1, 500–506.
  • Lickert, H. et al., Baf60c is essential for function of baf chromatin remodelling complexes in heart development. Nature, 2004, 432, 107–112.
  • Wang, X., Sansam, C. G., Thom, C. S., Metzger, D., Evans, J. A., Nguyen, P. T. and Roberts, C. W., Oncogenesis caused by loss of the snf5 tumour suppressor is dependent on activity of brg1, the atpase of the swi/snf chromatin remodelling complex. Cancer Res., 2009, 69, 8094–8101.
  • Doan, D. N., Veal, T. M., Yan, Z., Wang, W., Jones, S. N. and Imbalzano, A. N., Loss of the ini1 tumour suppressor does not impair the expression of multiple brg1-dependent genes or the assembly of swi/snf enzymes. Oncogene, 2004, 23, 3462–3473.
  • Hoffman, G. R. et al., Functional epigenetics approach identifies brm/smarca2 as a critical synthetic lethal target in brg1-deficient cancers. Proc. Natl. Acad. Sci. USA, 2014, 111, 3128–3133.
  • Helming, K. C. et al., Arid1b is a specific vulnerability in arid1amutant cancers. Nat. Med., 2014, 20, 251–254.
  • Wilson, B. G. et al., Residual complexes containing smarca2 (brm) underlie the oncogenic drive of smarca4 (brg1) mutation. Mol. Cell Biol., 2014, 34, 1136–1144.
  • Dutta, A. et al., Composition and function of mutant swi/snf complexes. Cell Rep., 2017, 18, 2124–2134.
  • Schuettengruber, B., Chourrout, D., Vervoort, M., Leblanc, B. and Cavalli, G., Genome regulation by polycomb and trithorax proteins. Cell, 2007, 128, 735–745.
  • Kia, S. K., Gorski, M. M., Giannakopoulos, S. and Verrijzer, C. P., Swi/snf mediates polycomb eviction and epigenetic reprogramming of the ink4b-arf-ink4a locus. Mol. Cell Biol., 2008, 28, 3457–3464.
  • Knutson, S. K. et al., Durable tumour regression in genetically altered malignant rhabdoid tumours by inhibition of methyltransferase ezh2. Proc. Natl. Acad. Sci. USA, 2013, 110, 7922–7927.
  • Bitler, B. G. et al., Synthetic lethality by targeting ezh2 methyltransferase activity in arid1a-mutated cancers. Nat. Med., 2015, 21, 231–238.
  • Bitler, B. G., Fatkhutdinov, N. and Zhang, R., Potential therapeutic targets in arid1a-mutated cancers. Expert Opin. Ther. Targets, 2015, 19, 1419–1422.
  • Tamkun, J. W., Deuring, R., Scott, M. P., Kissinger, M., Pattatucci, A. M., Kaufman, T. C. and Kennison, J. A., Brahma: a regulator of drosophila homeotic genes structurally related to the yeast transcriptional activator snf2/swi2. Cell, 1992, 68, 561– 572.
  • Ho, L., Miller, E. L., Ronan, J. L., Ho, W. Q., Jothi, R. and Crabtree, G. R., Esbaf facilitates pluripotency by conditioning the genome for lif/stat3 signalling and by regulating polycomb function. Nat. Cell Biol., 2011, 13, 903–913.
  • Fillmore, C. M. et al., Ezh2 inhibition sensitizes brg1 and egfr mutant lung tumours to topoii inhibitors. Nature, 2015, 520, 239–242.
  • Tagal, V. et al., Smarca4-inactivating mutations increase sensitivity to aurora kinase a inhibitor vx-680 in non-small cell lung cancers. Nat. Commun., 2017, 8, 14098.
  • Deribe, Y. L. et al., Author correction: Mutations in the swi/snf complex induce a targetable dependence on oxidative phosphorylation in lung cancer. Nat. Med., 2018, 24, 1627.
  • Shen, J. et al., Arid1a deficiency impairs the DNA damage checkpoint and sensitizes cells to parp inhibitors. Cancer Discov., 2015, 5, 752–767.
  • Ribeiro-Silva, C. et al., DNA damage sensitivity of swi/snfdeficient cells depends on tfiih subunit p62/gtf2h1. Nat. Commun., 2018, 9, 4067.
  • Berns, K. et al., Arid1a mutation sensitizes most ovarian clear cell carcinomas to bet inhibitors. Oncogene, 2018, 37, 4611– 4625.
  • Miller, R. E. et al., Synthetic lethal targeting of arid1a-mutant ovarian clear cell tumours with dasatinib. Mol. Cancer Ther., 2016, 15, 1472–1484.
  • Bitler, B. G. et al., Arid1a-mutated ovarian cancers depend on hdac6 activity. Nat. Cell Biol., 2017, 19, 962–973.
  • Shen, J. et al., Arid1a deficiency promotes mutability and potentiates therapeutic antitumour immunity unleashed by immune checkpoint blockade. Nat. Med., 2018, 24, 556–562.
  • Chang, L. et al., The swi/snf complex is a mechanoregulated inhibitor of yap and taz. Nature, 2018, 563, 265–269.
  • Li, X. S., Trojer, P., Matsumura, T., Treisman, J. E. and Tanese, N., Mammalian swi/snf – a subunit baf250/arid1 is an e3 ubiquitin ligase that targets histone h2b. Mol. Cell Biol., 2010, 30, 1673–1688.
  • Shi, J. et al., Role of swi/snf in acute leukemia maintenance and enhancer-mediated myc regulation. Genes Dev., 2013, 27, 2648– 2662.
  • Watanabe, T., Semba, S. and Yokozaki, H., Regulation of pten expression by the swi/snf chromatin-remodelling protein brg1 in human colorectal carcinoma cells. Br. J. Cancer, 2011, 104, 146– 154.
  • Sun, A., Tawfik, O., Gayed, B., Thrasher, J. B., Hoestje, S., Li, C. and Li, B., Aberrant expression of swi/snf catalytic subunits brg1/brm is associated with tumour development and increased invasiveness in prostate cancers. Prostate, 2007, 67, 203–213.
  • Do, S. I. et al., Increased brahma-related gene 1 expression predicts distant metastasis and shorter survival in patients with invasive ductal carcinoma of the breast. Anticancer Res., 2016, 36, 4873–4882.
  • Taulli, R. et al., Failure to downregulate the baf53a subunit of the swi/snf chromatin remodelling complex contributes to the differentiation block in rhabdomyosarcoma. Oncogene, 2014, 33, 2354–2362.
  • Meng, L., Wang, X., Liao, W., Liu, J., Liao, Y. and He, Q., Baf53a is a potential prognostic biomarker and promotes invasion and epithelial-mesenchymal transition of glioma cells. Oncol. Rep., 2017, 38, 3327–3334.
  • Balasubramaniam, S. et al., Aberrant baf57 signaling facilitates prometastatic phenotypes. Clin. Cancer Res., 2013, 19, 2657– 2667.
  • Shen, J. et al., Epigenetic silencing of mir-490-3p reactivates the chromatin remodeller smarcd1 to promote helicobacter pyloriinduced gastric carcinogenesis. Cancer Res., 2015, 75, 754–765.
  • Heeboll, S. et al., Smarcc1 expression is upregulated in prostate cancer and positively correlated with tumour recurrence and dedifferentiation. Histol. Histopathol., 2008, 23, 1069–1076.
  • Buscarlet, M. et al., Essential role of brg, the atpase subunit of baf chromatin remodelling complexes, in leukemia maintenance. Blood, 2014, 123, 1720–1728.
  • Wu, Q. et al., The swi/snf atpases are required for triple negative breast cancer cell proliferation. J. Cell Physiol., 2015, 230, 2683–2694.
  • Wu, Q., Lian, J. B., Stein, J. L., Stein, G. S., Nickerson, J. A. and Imbalzano, A. N., The brg1 atpase of human swi/snf chromatin remodelling enzymes as a driver of cancer. Epigenomics, 2017, 9, 919–931.
  • Jubierre, L. et al., Brg1/smarca4 is essential for neuroblastoma cell viability through modulation of cell death and survival pathways. Oncogene, 2016, 35, 5179–5190.
  • Boulay, G. et al., Cancer-specific retargeting of baf complexes by a prion-like domain. Cell, 2017, 171, 163–178 e119.
  • Guerrero-Martinez, J. A. and Reyes, J. C., High expression of smarca4 or smarca2 is frequently associated with an opposite prognosis in cancer. Sci. Rep., 2018, 8, 2043.
  • Kadoch, C. and Crabtree, G. R., Reversible disruption of mswi/snf (baf) complexes by the ss18-ssx oncogenic fusion in synovial sarcoma. Cell, 2013, 153, 71–85.
  • McBride, M. J. et al., The ss18-ssx fusion oncoprotein hijacks baf complex targeting and function to drive synovial sarcoma. Cancer Cell, 2018, 33, 1128–1141 e1127.
  • Pfister, N. T. et al., Mutant p53 cooperates with the swi/snf chromatin remodelling complex to regulate vegfr2 in breast cancer cells. Genes Dev., 2015, 29, 1298–1315.
  • Wang, G. et al., Loss of brg1 induces crc cell senescence by regulating p53/p21 pathway. Cell Death Dis., 2017, 8, e2607.
  • Robinson, G. et al., Novel mutations target distinct subgroups of medulloblastoma. Nature, 2012, 488, 43–48.
  • Pugh, T. J. et al., Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature, 2012, 488, 106–110.
  • Tsurusaki, Y. et al., Mutations affecting components of the swi/snf complex cause coffin-siris syndrome. Nat. Genet., 2012, 44, 376–378.
  • Backx, L., Seuntjens, E., Devriendt, K., Vermeesch, J. and Van Esch, H., A balanced translocation t(6;14)(q25.3;q13.2) leading to reciprocal fusion transcripts in a patient with intellectual disability and agenesis of corpus callosum. Cytogenet Genome Res., 2011, 132, 135–143.
  • Halgren, C. et al., Corpus callosum abnormalities, intellectual disability, speech impairment, and autism in patients with haploinsufficiency of arid1b. Clin Genet., 2012, 82, 248–255.
  • Takenouchi, T. et al., Hirschsprung disease as a yet undescribed phenotype in a patient with arid1b mutation. Am. J. Med. Genet A, 2016, 170, 3249–3252.
  • Santen, G. W. et al., Mutations in swi/snf chromatin remodelling complex gene arid1b cause coffin-siris syndrome. Nat. Genet., 2012, 44, 379–380.
  • Bramswig, N. C. et al., Heterozygosity for arid2 loss-of-function mutations in individuals with a coffin-siris syndrome-like phenotype. Hum. Genet., 2017, 136, 297–305.
  • Koga, M. et al., Involvement of smarca2/brm in the swi/snf chromatin-remodelling complex in schizophrenia. Hum. Mol. Genet., 2009, 18, 2483–2494.
  • Tang, S., Hughes, E., Lascelles, K., Euro, E. R. E. S. M. A. E. W. G., Simpson, M. A. and Pal, D. K., New smarca2 mutation in a patient with nicolaides-baraitser syndrome and myoclonic astatic epilepsy. Am. J. Med. Genet A, 2017, 173, 195–199.
  • Wolff, D. et al., In-frame deletion and missense mutations of the c-terminal helicase domain of smarca2 in three patients with nicolaides-baraitser syndrome. Mol. Syndromol., 2012, 2, 237–244.
  • De Rubeis, S. et al., Synaptic, transcriptional and chromatin genes disrupted in autism. Nature, 2014, 515, 209–215.
  • Kleefstra, T. et al., Disruption of an ehmt1-associated chromatinmodification module causes intellectual disability. Am. J. Hum. Genet., 2012, 91, 73–82.
  • Gossai, N., Biegel, J. A., Messiaen, L., Berry, S. A. and Moertel, C. L., Report of a patient with a constitutional missense mutation in smarcb1, coffin-siris phenotype, and schwannomatosis. Am. J. Med. Genet. A, 2015, 167, 3186–3191.
  • Wieczorek, D. et al., A comprehensive molecular study on coffin-siris and nicolaides-baraitser syndromes identifies a broad molecular and clinical spectrum converging on altered chromatin remodelling. Hum. Mol. Genet., 2013, 22, 5121–5135.
  • Kosho, T., Okamoto, N. and Coffin-Siris Syndrome International, C., Genotype-phenotype correlation of coffin-siris syndrome caused by mutations in smarcb1, smarca4, smarce1, and arid1a. Am. J. Med. Genet C Semin Med. Genet., 2014, 166, 262–275.
  • Zarate, Y. A. et al., Smarce1, a rare cause of coffin-siris syndrome: clinical description of three additional cases. Am. J. Med. Genet A, 2016, 170, 1967–1973.
  • Neale, B. M. et al., Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature, 2012, 485, 242– 245.
  • O’Roak, B. J. et al., Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature, 2012, 485, 246–250.
  • Bagheri, H. et al., Identifying candidate genes for 2p15p16.1 microdeletion syndrome using clinical, genomic, and functional analysis. JCI Insight, 2016, 1, e85461.
  • Ratnakumar, K. and Bernstein, E., Atrx: the case of a peculiar chromatin remodeller. Epigenetics, 2013, 8, 3–9.
  • Elizondo, L. I. et al., Schimke immuno-osseous dysplasia: Smarcal1 loss-of-function and phenotypic correlation. J. Med. Genet., 2009, 46, 49–59.

Abstract Views: 340

PDF Views: 117




  • Taming the Master:SWI/SNF Chromatin Remodeller as a Therapeutic Target in Cancer

Abstract Views: 340  |  PDF Views: 117

Authors

Murali Dharan Bashyam
Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Inner Ring Road, Uppal, Hyderabad 500 039, India
Srinivas Animireddy
Manipal Academy of Higher Education, Manipal 576 104, India
Pratyusha Bala
Manipal Academy of Higher Education, Manipal 576 104, India

Abstract


Eukaryotic cells use histone modifiers and chromatin remodellers to facilitate protein DNA interactions in the nucleus; an important requisite for regulating several cardinal nuclear processes including transcription, replication, DNA repair and recombination, etc. The SWI/SNF complex is the most well-studied chromatin remodeller and is conserved from yeast to mammals. The complex is recruited to specific DNA sites, where it uses energy from ATP hydrolysis to catalyse nucleosome sliding or histone eviction from DNA. Mutational inactivation of SWI/SNF components has been identified in neurological syndromes and in several cancers. Recent deep sequencing studies have revealed a SWI/SNF mutation frequency of 20% in cancer genomes. In addition to mutations in tumour samples, extensive studies on cell lines and animal models have revealed tumour suppressive features for many individual SWI/SNF components. Thus, components of the complex are classified as tumour suppressors. Interestingly, however, majority of mutations cause incomplete inactivation of the complex, leaving behind a ‘residual’ complex that can be targeted for therapy. In addition, characterization of multiple roles of SWI/SNF components has revealed several therapeutic options. The current review summarizes the multi-faceted therapeutic opportunities for tumour bearing mutations in genes, encoding SWI/SNF components.

Keywords


ARID1A, Chromatin Remodeller, SWI/SNF, Therapeutic Targeting.

References





DOI: https://doi.org/10.18520/cs%2Fv116%2Fi10%2F1653-1665