In this study, a sensor is designed based on a basic radiometer system at 18.8 GHz for ground-based testing and operations. Initially a generic radiometer will be designed in total power radiometer configuration (Phase 1) that is more appropriate for remote sensing platforms for operations in a campaign mode, such as an airborne mission. The same radiometer is proposed to be modified as a null-balancing Dicke radiometer (Phase 2) that is more suitable for long-term field operations over a range of temperatures and environmental conditions. This system is also useful for long-term propagation experiments in communication. The development of a millimeter-wave radiometer is in several hardware realization phases identified as Phases 1 and 2. The present proposal is expected to facilitate realization and utilization of microwave radiometers for space applications. The team at Jain University, Bengaluru will complement activities at ISRO in remote sensing applications through any campaigns proposed by the latter. Any future incremental development activities such as augmentation at higher frequencies as well testing newer concepts such as phased-array antenna for electronic scanning at lower frequencies, dichroic antennas at very high frequencies, etc. may be attempted based on the trends in technology/hardware.
Keywords
Disaster Monitoring, Microwave Radiometer, Remote Sensing, Snow/Ice Studies.
User
Font Size
Information