Open Access Open Access  Restricted Access Subscription Access

Positron Annihilation Spectroscopic Studies of Sintering Effect on Sol–Gel-Synthesized SiO2 Wide Band Gap Semiconductor Nanocrystals


Affiliations
1 Department of Physics, A.P.C. Roy Government College, Siliguri, Darjeeling 734 010, India
 

Sol–gel procedure followed by sintering was used to prepare silica nanoparticles. Their structural properties were examined using XRD and HRTEM. Estimation of band gap and characterization of various type of defects were carried out by UV-Vis spectroscopy and positron annihilation spectroscopy. Though bulk SiO2 is an insulator, calculated band gap was in the range of wide band gap semiconductor region. High value of positron lifetime indicated presence of void type defects on sintering in air. The defect profile has changed from unsintered samples. Coincidence Doppler broadening spectroscopy revealed the momentum characteristics of core as well as valence electrons.

Keywords

Band Gap, Defects, Positron Annihilation Spectroscopy, Sol–Gel Procedure, Silica Nanoparticles.
User
Notifications
Font Size


  • Positron Annihilation Spectroscopic Studies of Sintering Effect on Sol–Gel-Synthesized SiO2 Wide Band Gap Semiconductor Nanocrystals

Abstract Views: 581  |  PDF Views: 153

Authors

Anjan Das
Department of Physics, A.P.C. Roy Government College, Siliguri, Darjeeling 734 010, India

Abstract


Sol–gel procedure followed by sintering was used to prepare silica nanoparticles. Their structural properties were examined using XRD and HRTEM. Estimation of band gap and characterization of various type of defects were carried out by UV-Vis spectroscopy and positron annihilation spectroscopy. Though bulk SiO2 is an insulator, calculated band gap was in the range of wide band gap semiconductor region. High value of positron lifetime indicated presence of void type defects on sintering in air. The defect profile has changed from unsintered samples. Coincidence Doppler broadening spectroscopy revealed the momentum characteristics of core as well as valence electrons.

Keywords


Band Gap, Defects, Positron Annihilation Spectroscopy, Sol–Gel Procedure, Silica Nanoparticles.

References





DOI: https://doi.org/10.18520/cs%2Fv117%2Fi12%2F1990-1998