The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


Alpha Particle X-ray Spectrometer (APXS) is one of the two scientific experiments on Chandrayaan-2 rover named as Pragyan. The primary scientific objective of APXS is to determine the elemental composition of the lunar surface in the surrounding regions of the landing site. This will be achieved by employing the technique of X-ray fluorescence (XRF) spectroscopy using in situ excitation source 244Cm emitting both X-rays and alpha particles. These radiations excite characteristic X-rays of the elements by the processes of particle induced X-ray emission and XRF. The characteristic X-rays are detected by the ‘state-of-the-art’ X-ray detector known as Silicon Drift Detector, which provides high energy resolution, as well as high efficiency in the energy range of 1–25 keV. This enables APXS to detect all major rock forming elements such as, Na, Mg, Al, Si, Ca, Ti and Fe. The flight model of the APXS payload has been completed and tested for various instrument parameters. The APXS provides energy resolution of ~135 eV at 5. 9keV for the detector operating temperature of about –35°C. The design details and the performance measurement of APXS are presented in this paper.

Keywords

Alpha Particle X-Ray Spectrometer, CSPA, Silicon Drift Detector, X-Ray Spectrometer.
User
Notifications
Font Size