The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


The objective of this study was the development of bioprocess for enhanced biomass production of probiotic Bifidobacterium bifidum. In the first process optimization step in Erlenmeyer flasks cultures, different experiments were conducted to study the effect of inoculum volume, inoculum age, temperature and pH of the growth medium on the kinetics of cell growth. In Erlenmeyer flasks cultures, the maximal biomass production was observed with 1% inoculum of 6 log hours at 37°C, and optimal pH of initial media was found to be 6.0. Further positive development in biomass production was observed by scaling up the fermentation process to stirred tank bioreactor. Fermentation was carried out in 2L stirred tank bioreactor, with agitation of 100 rpm and constant temperature of 37°C. The batch culture produced higher biomass of 34.1 g wet cell weight g/l in 12 log hours and viable counts (2.5 × 109 CFU/ml) compared to Erlenmeyer flasks. In conclusion, batch cultivation in the 2 l bioreactor with this growth medium under optimal conditions gives enhanced biomass production. However, based on our end result, high-cell density fed-batch and pH control strategies are recommended for the commercial production of B. bifidum as a probiotic.

Keywords

Bifidobacterium bifidum, Bioprocess Development, Culture Condition, Probiotics.
User
Notifications
Font Size