Open Access Open Access  Restricted Access Subscription Access

First Record of Circa 970 Ma Post-Collisional A-Type Magmatism in the Sendra Granitoid Suite, Central Aravalli Orogen, Northwest India


Affiliations
1 Centre of Advanced Study in Geology, Panjab University, Chandigarh 160 014, India
 

This study provides the first record for the emplacement of post-collisional A-type granites in extensional regime during the late Grenvillian period in northwest India. The ca. 970 Ma granites of the Sendra Granitoid Suite (Chang pluton) intrude calc-silicate rocks of the South Delhi Supergroup in the central Aravalli orogen. The Chang pluton is composed of granite sensu stricto; the granites are metaluminous, ferroan, calc-alkalic, and are characterized by high Ga/Al (>2.5), Nb + Y (>60 ppm), Ta + Yb (>6 ppm), REE, HFSE and zircon saturation temperatures, typical of A-type granites. The Y/Nb >1.2 further classified the rocks as A2-subtype, signifying their derivation from crustal sources in a post-collisional setting. The crustal source is also supported by their high LILE (Rb, K and Ba), and Pb, Th and REE. The geochronological data and tectonics of the region indicate that the granites were emplaced about 30 Myr after the Grenvillian collisional orogeny. This scenario likely resulted due to delamination of the lower part of the thickened orogenic lithosphere. These results are expected to have significant implications for the assembly tectonics of the Rodinia supercontinent.

Keywords

A-Type Granites, Post-Collisional Extension, Whole-Rock Geochemistry, Magmatism.
User
Notifications
Font Size

  • Li, Z. X. et al., Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian Res., 2008, 160, 179–210.
  • Bogdanova, S. V., Pisarevsky, S. A. and Li, Z. X., Assembly and breakup of Rodinia (some results of IGCP Project 440). Stratigr. Geol. Corr., 2009, 17, 259–274.
  • Pisarevsky, S. A., Wingate, M. T. D., Powell, C. McA., Johnson, S. and Evans, D. A. D., Models of Rodinia assembly and fragmentation. In Proterozoic East Gondwana: Supercontinent Assembly and Breakup (eds Yoshida, M., Windley, B. F. and Dasgupta, S.), Geological Society London, Special Publication, 2003, vol. 206, pp. 35–55.
  • Torsvik, T. H., Carter, L. M., Ashwal, L. D., Bhushan, S. K., Pandit, M. K. and Jamtveit, B., Rodinia refined or obscured: palaeomagnetism of the Malani igneous suite (NW India). Precambrian Res., 2001, 108, 319–333.
  • Bhowmik, S. K., Dasgupta, S., Baruah, S. and Kalita, D., Thermal history of a Late Mesoproterozoic paired metamorphic belt (?) during Rodinia assembly: new insights from medium-pressure granulites from the Aravalli–Delhi Mobile Belt, northwestern India. Geosci. Front., 2018, 9, 335–354.
  • Bhowmik, S. K., The current status of orogenesis in the Central Indian Tectonic Zone: a review from its southern margin. Geol. J., 2019, 54, 2912–2934.
  • Deb, M., Thorpe, R. I., Krstic, D., Corfu, F. and Davis, D. W., Zircon U–Pb and galena Pb isotope evidence for an approximate 1.0 Ga terrane constituting the western margin of the Aravalli– Delhi orogenic belt, northwestern India. Precambrian Res., 2001, 108, 195–213.
  • Pandit, M. K., Carter, L. M., Ashwal, L. D., Tucker, R. D., Torsvik, T. H., Jamtveit, B. and Bhushan, S. K., Age, petrogenesis and significance of 1 Ga granitoids and related rocks from the Sendra area, Aravalli craton, NW India. J. Asian Earth Sci., 2003, 22, 363–381.
  • Kaur, P., Zeh, A. and Chaudhri, N., Archean crustal evolution of the Aravalli Banded Gneissic Complex, NW India: constraints from zircon U–Pb ages, Lu–Hf isotope systematics, and wholerock geochemistry. Precambrian Res., 2019, 327, 81–102.
  • Kaur, P., Zeh, A., Chaudhri, N., Gerdes, A. and Okrusch, M., Archaean to Palaeoproterozoic crustal evolution of the Aravalli orogen, NW India, and its hinterland: the U–Pb and Hf isotope record of detrital zircon. Precambrian Res., 2011, 187, 155–164.
  • McKenzie, N. R., Hughes, N. C., Myrow, P. M., Banerjee, D. M., Deb, M. and Planavsky, N. J., New age constraints for the Proterozoic Aravalli–Delhi successions of India and their implications. Precambrian Res., 2013, 238, 120–128.
  • Gupta, S. N., Arora, Y. K., Mathur, R. K., Iqbaluddin, Prasad, B., Sahai, T. N. and Sharma, S. B., Lithostratigraphic map of Aravalli region, southern Rajasthan and northeastern Gujarat. Geological Survey of India Publication, Hyderabad, 1980.
  • Gupta, S. N., Arora, Y. K., Mathur, R. K., Iqbaluddin, Prasad, B., Sahai, T. N. and Sharma, S. B., The Precambrian geology of the Aravalli region, southern Rajasthan and northeastern Gujarat. Mem. Geol. Surv. India, 1997, 123, 262.
  • Agrawal, S. and Srivastava, R. K., Geochemistry of Late Proterozoic Sendra Granitoid Suite, Central Rajastahn, India: role of magma mixing/hybridization process in their genesis. J. Geol. Soc. India, 1997, 50, 607–618.
  • Gangopadhyay, A. and Mukhopadhyay, D., Structural geometry of the Delhi Supergroup near Sendra – an example of the impress of granite diapirism on tectonic structures. Rec. Res. Geol., 1987, 13, 45–60.
  • Tobisch, O. T., Collerson, K. D., Bhattacharyya, T. and Mukhopadhyay, D., Structural relationships and Sm–Nd isotope systematics of polymetamorphic granitic gneisses and granitic rocks from central Rajasthan, India: implications for the evolution of the Aravalli craton. Precambrian Res., 1994, 65, 319–339.
  • Kaur, P., Chaudhri, N. and Eliyas, N., Origin of trondhjemite and albitite at the expense of A-type granite, Aravalli orogen, India: evidence from new metasoamtic replacement fronts. Geosci. Front., 2019, 10, 1891–1913.
  • Whalen, J. B., Currie, K. L. and Chappell, B. W., A-type granites, geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol., 1987, 95, 407–419.
  • Collins, W. J., Beams, S. D., White, A. J. R. and Chappell, B. W., Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib. Mineral. Petrol., 1982, 80, 189–200.
  • Frost, B. R., Barnes, C. G., Collins, W. J., Arculus, R. J., Ellis, D. J. and Frost, C. D., A geochemical classification for granitic rocks. J. Petrol., 2001, 42, 2033–2048.
  • Watson, E. B. and Harrison, T. M., Zircon saturation revisited: temperature and composition effects in a variety of crustal magmas types. Earth Planet. Sci. Lett., 1983, 64, 295–304.
  • Clemens, J. D., Holloway, J. R. and White, A. J. R., Origin of an A-type granite: experimental constraints. Am. Mineral., 1986, 71, 317–324.
  • Dall’Agnol, R., Scaillet, B. and Pichavant, M., An experimental study of a Lower Proetrozoic A-type granite from the Eastern Amazonian Craton, Brazil. J. Petrol., 1999, 40, 1673–1698.
  • King, P. L., White, A. J. R., Chappell, B. W. and Allen, C. M., Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, southeastern Australia. J. Petrol., 1997, 38, 371–391.
  • King, P. L., Chappell, B. W., Allen, C. M. and White, A. J. R., Are A-type granites the high-temperature felsic granites? Evidence from fractionated granites of the Wangrah Suite. Aust. J. Earth Sci., 2001, 48, 501–514.
  • Whalen, J. B. and Hilderbrand, R. S., Trace element discrimination of arc, slab failure, and A-type granitic rocks. Lithos, 2019, 348–349, 105179.
  • Pearce, J. A., Harris, N. B. W. and Tindle, A. G., Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol., 1984, 25, 956–983.
  • Eby, G. N., Chemical subdivision of the A-type granitoids; petrogenetic and tectonic implications. Geology, 1992, 20, 641–644.
  • Pearce, J. A., Sources and settings of granitic rocks. Episodes, 1996, 19, 120–125.
  • Kaur, P., Zeh, A., Chaudhri, N. and Eliyas, N., Two distinct sources of 1.73–1.70 Ga A-type granites from the northern Aravalli orogen, NW India: constraints from in situ zircon U–Pb ages and Lu–Hf isotopes. Gondwana Res., 2017, 49, 164–181.
  • Bhowmik, S. K., Bernhardt, H.-J. and Dasgupta, S., Grenvillian age high-pressure upper amphibolite–granulite metamorphism in the Aravalli–Delhi Mobile Belt, northwestern India: new evidence from monazite chemical age and its implication. Precambrian Res., 2010, 178, 168–184.
  • Corrigan, D. and Hanmer, S., Anorthosite and related granitoids in the Grenville orogen: a product of convective thinning of the lithosphere? Geology, 1997, 25, 61–64.
  • Tollo, R. P., Aleinikoff, J. N., Borduas, E. A., Dickin, A. P., McNutt, R. H. and Fanning, C. M., Grenvillian magmatism in the northern Virginia Blue Ridge: petrologic implications of episodic granitic magma production and the significance of postorogenic A-type charnockite. Precambrian Res., 2006, 151, 224–264.
  • Volpe, A. M. and Macdougall, J. D., Geochemistry and isotopic characteristics of mafic (Phulad Ophiolite) and related rocks in the Delhi Supergroup, Rajasthan, India: implications for rifting in the Proterozoic. Precambrian Res., 1990, 48, 167–191.
  • Deb, M. and Sarkar, S. C., Proterozoic tectonic evolution and metallogenesis in the Aravalli–Delhi orogenic complex, northwestern India. Precambrian Res., 1990, 46, 115–137.
  • Smith, D. R. et al., Petrology and geochemistry of late-stage intrusions of the A-type, mid-Proterozoic Pikes Peak batholith (central Colorado, USA): implications for petrogenetic models. Precambrian Res., 1999, 98, 271–305.
  • Shannon, W. M., Barnes, C. G. and Bickford, M. E., Grenville magmatism in west Texas: petrology and geochemistry of Red Bluff granitic suite. J. Petrol., 1997, 38, 1279–1305.
  • Li, Y., Barnes, M. A., Barnes, C. G. and Frost, C. D., Grenvilleage A-type and related magmatism in southern Laurentia, Texas and New Mexico, USA. Lithos, 2007, 97, 58–87.
  • Vander Auwera, J., Bogaerts, M., Liégeois, J.-P., Demaiffe, D. D., Wilmart, E., Bolle, O. and Duchesne, J. C., Derivation of 1.0– 0.9 Ga ferro-potassic A-type granitoids of southern Norway by extreme differentiation from basic magmas. Precambrian Res., 2003, 124, 107–148.
  • Bogaerts, M., Scaillet, B., Liégeois, J.-P. and Vander Auwera, J., Petrology and geochemistry of the Lyngdal granodiorite (Southern Norway) and the role of fractional crystallisation in the genesis of Proterozoic ferro-potassic A-type granites. Precambrian Res., 2003, 124, 149–184.
  • Liu, C., Runyon, S. E., Knoll, A. H. and Hazen, R. M., The same and not the same: ore geology, mineralogy and geochemistry of Rodinia assembly versus other supercontinents. Earth-Sci. Rev., 2019, 196, 102860.
  • Kaur, P., Chaudhri, N. and Hofmann, A. W., New evidence for two sharp replacement fronts during albitization of granitoids from northern Aravalli orogen, northwest India. Int. Geol. Rev., 2015, 57, 1660–1685.
  • Kaur, P., Zeh, A. and Chaudhri, N., Palaeoproterozoic continentalarc magmatism, and Neoproterozoic metamorphism in the Aravalli– Delhi orogenic belt, NW India: new constraints from in situ zircon U–Pb–Hf isotope systematics, monazite U–Pb dating and wholerock geochemistry. J. Asian Earth Sci., 2017, 136, 68–88.
  • Streckeisen, A., To each plutonic rock its proper name. Earth-Sci. Rev., 1976, 12, 1–33.
  • McDonough, W. F. and Sun, S.-S., Composition of the Earth. Chem. Geol., 1995, 120, 223–253.
  • Frost, B. R. and Frost, C. D., A geochemical classification for feldspathic igneous rocks. J. Petrol., 2008, 49, 1955–1969.

Abstract Views: 584

PDF Views: 145




  • First Record of Circa 970 Ma Post-Collisional A-Type Magmatism in the Sendra Granitoid Suite, Central Aravalli Orogen, Northwest India

Abstract Views: 584  |  PDF Views: 145

Authors

Jaideep K. Tiwana
Centre of Advanced Study in Geology, Panjab University, Chandigarh 160 014, India
Parampreet Kaur
Centre of Advanced Study in Geology, Panjab University, Chandigarh 160 014, India
Naveen Chaudhri
Centre of Advanced Study in Geology, Panjab University, Chandigarh 160 014, India
Manisha
Centre of Advanced Study in Geology, Panjab University, Chandigarh 160 014, India

Abstract


This study provides the first record for the emplacement of post-collisional A-type granites in extensional regime during the late Grenvillian period in northwest India. The ca. 970 Ma granites of the Sendra Granitoid Suite (Chang pluton) intrude calc-silicate rocks of the South Delhi Supergroup in the central Aravalli orogen. The Chang pluton is composed of granite sensu stricto; the granites are metaluminous, ferroan, calc-alkalic, and are characterized by high Ga/Al (>2.5), Nb + Y (>60 ppm), Ta + Yb (>6 ppm), REE, HFSE and zircon saturation temperatures, typical of A-type granites. The Y/Nb >1.2 further classified the rocks as A2-subtype, signifying their derivation from crustal sources in a post-collisional setting. The crustal source is also supported by their high LILE (Rb, K and Ba), and Pb, Th and REE. The geochronological data and tectonics of the region indicate that the granites were emplaced about 30 Myr after the Grenvillian collisional orogeny. This scenario likely resulted due to delamination of the lower part of the thickened orogenic lithosphere. These results are expected to have significant implications for the assembly tectonics of the Rodinia supercontinent.

Keywords


A-Type Granites, Post-Collisional Extension, Whole-Rock Geochemistry, Magmatism.

References





DOI: https://doi.org/10.18520/cs%2Fv118%2Fi5%2F801-808