Open Access Open Access  Restricted Access Subscription Access

Microbial Diversity Analysis in the Oxygen Minimum Zones of the Arabian Sea using Metagenomics Approach


Affiliations
1 Molecular Biology Research Laboratory, Centre for Advanced Studies, Department of Zoology, Savitribai Phule Pune University, Pune 411 007, India
2 ISRO Chair Professor, ISRO Space and Techn ology Cell, Savitribai Phule Pune University, Pune 411 007, India
 

Large oxygen-depleted areas known as oxygen minimum zones (OMZs) have been reported from the Arabian Sea, and recent reports indicate that these areas are expanding at an alarming rate. In marine waters, oxygen depletion may also be related to global warming and temperature rise. The acidification and deoxygenation due to OMZs can lead to major consequences wherein the plants, fish and other biota will struggle to survive in the ecosystem. The present study has identified the microbial community structure using next generation sequencing-based metagenomics analysis in water sa mples collected at different depths from the OMZs and non-OMZs of the Arabian Sea. Environmental variables such as depth, site of collection and oxygen concentration might influence species richness and evenness among microbial communities in these locations. Our observations suggest that population dynamics of microbes consisting of nitrate reducers accompanied by sulphate reducers and sulphur oxidizers influences the interconnected geoche mical cycles of OMZs. In addition to providing baseline data related to the diversity and microbial community dynamics in waters in the OMZs; such analysis can provide insight into processes regulating productivity and ecological co mmunity structure of the ocean.

Keywords

Bacterial Diversity, Metagenomics, Microbial Communities, Oxygen Minimum Zones.
User
Notifications
Font Size

  • Naqvi, S. W. A., Some aspects of the oxygen-deficient conditions and denitrification in the Arabian Sea. J. Mar. Res., 1987, 45, 1049–1072.
  • McCreary, J. P., Yu, Z., Hood, R. R., Vinaychandran, P. N., Furue, R., Ishida, A. and Richards, K. J., Dynamics of the Indian Ocean oxygen minimum zones. Prog. Oceanogr., 2013, 112, 15– 37.
  • Morrison, J. M., Codispoti, L. A., Gaurin, S., Jones, B., Manghnani, V. and Zheng, Z., Seasonal variation of hydrographic and nutrient fields during the US JGOFS Arabian Sea Process Study. Deep Sea Res. II, 1998, 45, 2053–2101.
  • Naqvi, W. A., Geographical extent of denitrification in the Arabian Sea in relation to some physical processes. Oceanol. Acta, 1991, 143, 281–290.
  • Stramma, L., Johnson, G. C., Sprintall, J. and Mohrholz, V., Ex-panding oxygen-minimum zones in the tropical oceans. Science, 2008, 320, 655–658.
  • Sarmiento, J. L., Hughes, T. M., Stouffer, R. J. and Manabe, S., Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature, 1998, 393, 245–249.
  • Keeling, R. F., Körtzinger, A. and Gruber, N., Ocean deoxygenation in a warming world. Annu. Rev. Mar. Sci., 2010, 2, 199–229.
  • DeSousa, S. N., Dileepkumar, M., Sardessai, S., Sarma, V. V. S. S. and Shirodkar, P. V., Seasonal variability in oxygen and nutrients in the central and eastern Arabian Sea. Curr. Sci., 1996, 71, 847–851.
  • Morrison, J. M. et al., The oxygen minimum zone in the Arabian Sea during 1995. Deep Sea Res. II, 1999, 468, 1903–1931.
  • Resplandy, L., Lévy, M., Bopp, L., Echevin, V., Pous, S., Sarma, V. V. S. S. and Kumar, D., Controlling factors of the oxygen balance in the Arabian Sea’s OMZ. Biogeosciences, 2012, 9, 5095–5109.
  • Gilly, W. F., Beman, J. M., Litvin, S. Y. and Robison, B. H., Oceanographic and biological effects of shoaling of the oxygen minimum zone. Annu. Rev. Mar. Sci., 2013, 5, 393–420.
  • Thamdrup, B., Dalsgaard, T., Jensen, M. M., Ulloa, O., Farias, L. and Escribano, R., Anaerobic ammonium oxidation in the oxygen-deficient waters off northern Chile. Limnol. Oceanogr., 2006, 51, 2145–2156.
  • Cohen, Y. and Gordon, L. I., Nitrous oxide in the oxygen min i-mum of the eastern tropical North Pacific: evidence for its con-sumption during denitrification and possible mechanisms for it s production. Deep-Sea Res., 1978, 25, 509–524.
  • Diaz, R. J. and Rosenberg, R., Spreading dead zones and consequences for marine ecosystems. Science, 2008, 321, 926–929.
  • Lam, P. and Kuypers, M. M., Microbial nitrogen cycling processes in oxygen minimum zones. Annu. Rev. Mar. Sci., 2011, 3, 317–345.
  • Ward, B. and Zafiriou, O., Nitrification and nitric oxide in the oxygen minimum of the eastern tropical North Pacific. Deep-Sea Res., 1988, 35, 1127–1142.
  • Ward, B., Glover, H. and Lipschultz, F., Chemoautotrophic activity and nitrification in the oxygen minimum zone off Peru . Deep-Sea Res., 1989, 36, 1031–1051.
  • Füssel, J. et al., Nitrite oxidation in the Namibian oxygen minimum zone. ISME J., 2011, 6, 1200–1209.
  • Hamersley, M. R. et al., Anaerobic ammonium oxidation in the Peruvian oxygen minimum zone. Limnol. Oceanogr ., 2007, 52, 923–933.
  • Lam, P. et al., Revising the nitrogen cycle in the Peruvian oxygen minimum zone. Proc. Natl. Acad. Sci. USA, 2009, 106, 4752–4757.
  • Stewart, F. J., Ulloa, O. and DeLong, E. F., Microbial meta-transcriptomics in a permanent marine oxygen minimum zone. Environ. Microbiol., 2012, 14, 23–40.
  • Ganesh, S., Parris, D. J., Delong, E. F. and Stewart, F. J., Meta-genomic analysis of size-fractionated picoplankton in a marine oxygen minimum zone. ISME J., 2014, 8, 187–211.
  • Hawley, A. K., Brewer, H. M., Norbeck, A. D., Paša-Toliae, L. and Hallam, S. J., Metaproteomics reveals differential modes of metabolic coupling among ubiquitous oxygen minimum zone microbes. Proc. Natl. Acad. Sci. USA, 2014, 111, 11395–11400.
  • Ganesh, S., Bristow, L. A., Larsen, M., Sarode, N., Thamdrup, B. and Stewart, F. J., Size-fraction partitioning of community gene transcription and nitrogen metabolism in a marine oxygen minimum zone. ISME J., 2015, 9, 2682–2696.
  • Jayakumar, D. A., Francis, C. A., Naqvi, S. W. A. and Ward, B. B., Diversity of nitrite reductase genes nirS in the denitrifying water column of the coastal Arabian Sea. Aquat. Microbiol. Ecol., 2004, 34, 69–78.
  • Jayakumar, A., Al-Rshaidat, M. M. D., Ward, B. B. and Mulhol-land, M. R., Diversity, distribution, and expression of diazotroph nifH genes in oxygen-deficient waters of the Arabian Sea. FEMS Microbiol. Ecol., 2012, 82, 597–606.
  • Kalvelage, T. et al., Aerobic microbial respiration in oceanic oxygen minimum zones. PLoS ONE, 2015, 107, e0133526.
  • Stevens, H. and Ulloa, O., Bacterial diversity in the oxygen minimum zone of the eastern tropical South Pacific. Environ. Microbiol., 2008, 10, 1244–1259.
  • Glass, J. B. et al., Metaomic signatures of microbial metal and nitrogen cycling in marine oxygen minimum zones. Front. Microbiol., 2015, 6, 1–13.
  • Carlson, C. A., Morris, R., Parsons, R., Treusch, A. H., Giovannoni, S. J. and Vergin, K., Seasonal dynamics of SAR11 populations in the euphotic and mesopelagic zones of the northwestern Sargas-so Sea. ISME J., 2009, 3, 283–295.
  • Gonsalves, M. J. et al., Predominance of anaerobic bacterial community over aerobic community contribute to intensify ‘oxygen minimum zone’ in the eastern Arabian Sea. Continent. Shelf Res., 2011, 31, 1224–1235.
  • Pitcher, A., Villanueva, L., Hopmans, E. C., Schouten, S., Reichart, G. J., Sinninghe, J. and Damsté, S., Niche segregation of ammonia-oxidizing archaea and anammox bacteria in the Arabian Sea oxygen minimum zone. ISME J., 2011, 5, 1896–1904.
  • Wyman, M., Hodgson, S. and Bird, C., Denitrifying Alphaproteo bacteria from the Arabian Sea that express nosZ, the gene encoding nitrous oxide reductase, in oxic and suboxic waters. Appl. Environ. Microbiol., 2013, 798, 2670–2681.
  • Lüke, C., Speth, D. R., Kox, M. A. R., Villanueva, L. and Jetten, M. S. M., Metagenomic analysis of nitrogen and methane cycling in the Arabian Sea oxygen minimum zone. Peer J., 2016, 4,e1924; doi:10.7717/peerj.1924.
  • Kim, O. S. et al., Introducing EzTaxon -e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol ., 2012, 62, 716–721; doi:10.1099/ijs.0.038075-0.
  • Langille, M. G. et al., Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnol., 2013, 31, 814–821.
  • Kanehisa, M., Goto, S., Sato, Y., Kawashima, M., Furumichi, M. and Tanabe, M., Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res., 2014, 42(D1), D199– D205.
  • Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S. and Hutten, C., Metagenomic biomarker discovery and explanation. Genome Biol., 2011, 12, R60.
  • Labrenz, M., Sintes, E., Toetzke, F., Zumsteg, A., Herndl, G. J., Seidler, M. and Jürgens, K., Relevance of a crenarchaeotal su b-cluster related to Candidatus Nitrosopumilus maritimus 830 to ammonia oxidation in the suboxic zone of the central Baltic Sea. ISME J., 2010, 412, 1496–1508.
  • Walker, C. B. et al., Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine Crenarchaea. Proc. Natl. Acad. Sci. USA, 2010, 107, 8818–8823.
  • Konneke, M. E., de la Torre, J.R., Walker, C. B., Waterbury, J. B. and Stahl, D. A., Isolation of an autotrophic ammonia -oxidizing marine archaeon. Nature, 2005, 437, 543–546.
  • Naqvi, S. W. A., Kumar, M. D., Narvekar, P. V., de Souza, S. N., George, M. D. and D’Silva, C., An intermediate nepheloid layer associated with high microbial metabolic rates a nd denitrification in the Northwest Indian Ocean. J. Geophys. Res., 1993, 98, 16469–16479.
  • Koppelmann, R., Zimmermann-Timm, H. and Weikert, H., Bacterial and zooplankton distribution in deep waters of the Arabian Sea. Deep-Sea Res. I, 2005, 52, 2184–2192.
  • LokaBharathi, P. A. and Chandramohan, D., Sulfate-reducing bacteria from the Arabian Sea – their distribution in relation to thiosulfate-oxidising and heterotrophic bacteria. Bull. Mar. Sci., 1990, 47, 622–630.
  • LokaBharathi, P. A., Nair, S. and Chandramohan, D., Anaerobic sulfide-oxidation in marine colorless sulfur-oxidizing bacteria. J. Mar. Biotechnol., 1997, 52(3), 172–177.
  • Jayakumar, A., O’Mullan, G. D., Naqvi, S. W. A. and Ward, B. B., Denitrifying bacterial community composition changes associated with stages of denitrification in oxygen minimum zones. Microb. Ecol., 2009, 58, 350–362.
  • Ward, B. B., Devol, A. H., Rich, J. J., Chang, B. X., Bulow, S. E., Naik, H., Pratihary, A. and Jayakumar, A., Denitrification as the dominant nitrogen loss process in the Arabian Sea. Nature, 2009, 461, 78–81.
  • Lavik, G. et al., Detoxification of sulphidic African shelf waters by blooming chemolithotrophs. Nature, 2009, 457, 581–586.
  • Walsh, D. A. et al., Metagenome of a versatile chemolithoautotroph from expanding oceanic dead zones. Science, 2009, 326, 578–582.
  • Canfield, D. E. et al., A cryptic sulfur cycle in oxygen-minimum-zone waters off the Chilean coast. Science, 2010, 330, 1375–1378.
  • Wang, L. P., Wang, W. P., Lai, Q. L. and Shao, Z. Z., Gene diversity of CYP153A and AlkB alkane hydroxylases in oil-degrading bacteria isolated from the Atlantic Ocean. Environ. Microbiol., 2010, 12, 1230–1242.
  • Wang, W. and Shao, Z., Diversity of flavin-binding monooxygenase genes (almA) in marine bacteria capable of d egradation long-chain alkanes. FEMS Microbiol. Ecol., 2012, 80, 523–533.
  • Rajpathak, S. N., Banerjee, R., Mishra, P. G., Khedkar, A. M., Patil, Y. M., Joshi, S. R. and Deobagkar, D. D., An exploration of microbial and associated functional diversity in the OMZ and non-OMZ areas in the Bay of Bengal. J. Biosci., 2018, 43, 635–648; https://doi.org/10.1007/s12038-018-9781-2.

Abstract Views: 410

PDF Views: 152




  • Microbial Diversity Analysis in the Oxygen Minimum Zones of the Arabian Sea using Metagenomics Approach

Abstract Views: 410  |  PDF Views: 152

Authors

Mandar S. Paingankar
Molecular Biology Research Laboratory, Centre for Advanced Studies, Department of Zoology, Savitribai Phule Pune University, Pune 411 007, India
Kedar Ahire
Molecular Biology Research Laboratory, Centre for Advanced Studies, Department of Zoology, Savitribai Phule Pune University, Pune 411 007, India
Pawan Mishra
Molecular Biology Research Laboratory, Centre for Advanced Studies, Department of Zoology, Savitribai Phule Pune University, Pune 411 007, India
Shriram Rajpathak
Molecular Biology Research Laboratory, Centre for Advanced Studies, Department of Zoology, Savitribai Phule Pune University, Pune 411 007, India
Deepti D. Deobagkar
ISRO Chair Professor, ISRO Space and Techn ology Cell, Savitribai Phule Pune University, Pune 411 007, India

Abstract


Large oxygen-depleted areas known as oxygen minimum zones (OMZs) have been reported from the Arabian Sea, and recent reports indicate that these areas are expanding at an alarming rate. In marine waters, oxygen depletion may also be related to global warming and temperature rise. The acidification and deoxygenation due to OMZs can lead to major consequences wherein the plants, fish and other biota will struggle to survive in the ecosystem. The present study has identified the microbial community structure using next generation sequencing-based metagenomics analysis in water sa mples collected at different depths from the OMZs and non-OMZs of the Arabian Sea. Environmental variables such as depth, site of collection and oxygen concentration might influence species richness and evenness among microbial communities in these locations. Our observations suggest that population dynamics of microbes consisting of nitrate reducers accompanied by sulphate reducers and sulphur oxidizers influences the interconnected geoche mical cycles of OMZs. In addition to providing baseline data related to the diversity and microbial community dynamics in waters in the OMZs; such analysis can provide insight into processes regulating productivity and ecological co mmunity structure of the ocean.

Keywords


Bacterial Diversity, Metagenomics, Microbial Communities, Oxygen Minimum Zones.

References





DOI: https://doi.org/10.18520/cs%2Fv118%2Fi7%2F1042-1051