The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


Rice cultivation over Asia has several thousand years of history. Adequate water availability is a prime factor for the cultivation of rice in this region. The remains of rice at the archaeological sites, therefore, provide an indirect clue on rainfall in this region. The stable isotopic compositions in remains of rice grains allow estimation of rainfall condition during rice cultivation. Often, such remains found at the archaeological sites suffer from the process of charring, which is likely to modify the original isotopic signature. Here, we performed charring experiments on rice grains at two different temperatures, i.e. 230°C and 250°C and documented the changes in the morphology and carbon isotopic composition (δ13C). A noticeable morphological shift was registered in the samples with progressive duration and temperature of charring. Further, cellulose was extracted and analysed for δ13C. Our results showed that the shift in δ13C observed for charred rice was relatively lower as compared to that observed in other cereals.

Keywords

Charring, Palaeoclimate Proxy, Rice, Stable Carbon Isotope.
User
Notifications
Font Size