Open Access
Subscription Access
Amelioration of Bleomycin-Induced Acute Lung Injury and Epithelial-Mesenchymal Transition by Baicalein in Mice
During lung fibrosis, acute pulmonary inflammation and epithelial–mesenchymal transition (EMT) play important roles. The present study analyses the ameliorative effect of baicalein, a bioactive flavonoid present in the dry ischolar_mains of Scutellaria baicalensis Georgi, on bleomycin-induced acute lung injury and subsequent EMT. Mice received a single intratracheal instillation of saline containing bleomycin @1 mg/kg body wt. Baicalein in different doses (0.1, 1.0, 10 mg/kg) was given intraperitoneally daily for one week. Pulmonary inflammation and EMT parameters were evaluated. Baicalein significantly attenuated bleomycin-induced pulmonary inflammatory and structural changes. Thus, treatment with baicalein ameliorates bleomycininduced acute inflammation and subsequent early stage of EMT.
Keywords
Acute Lung Injury, Baicalein, Bleomycin, Epithelial-Mesenchymal Transition, Mice.
User
Font Size
Information
- Chen, C. M., Chou, H. C. and Huang, L. T., Maternal nicotine exposure induces epithelial–mesenchymal transition in rat offspring lungs. Neonatology, 2015, 108, 179–187.
- Hashimoto, N., Jin, H., Liu, T., Chensue, S. W. and Phan, S. H., Bone marrow-derived progenitor cells in pulmonary fibrosis. J. Clin. Invest., 2004, 113, 243–252.
- Willis, B. C., Liebler, J. M., Luby, P. K., Nicholson, A. G., Crandall, E. D., du Bois, R. M. and Borok, Z., Induction of epithelial– mesenchymal transition in alveolar epithelial cells by transforming growth factor-beta1: potential role in idiopathic pulmonary fibrosis. Am. J. Pathol., 2005, 166, 1321–1332.
- Moeller, A., Ask, K., Warburton, D., Gauldie, J. and Kolb, M., The bleomycin animal model: a useful tool to investigate treatment options for idiopathic pulmonary fibrosis? Int. J. Biochem. Cell Biol., 2008, 40(3), 362–382.
- Borzone, G., Moreno, R., Urrea, R., Meneses, M., Oyarzún, M. and Lisboa, C., Bleomycin-induced chronic lung damage does not resemble human idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med., 2001, 63, 1648–1653.
- Hashimoto, N. et al., Endothelial–mesenchymal transition in bleomycin-induced pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol., 2010, 43, 161–172.
- Shan, H. et al., The analgesic and anti neuro inflammatory effect of baicalein in cancer-induced bone pain. J. Evid. Based Complement. Altern. Med., 2015; doi:10,1155/2015/973524.
- Mabalirajan, U. et al., Baicalein reduces airway injury in allergen and IL-13 induced airway inflammation. PLoS ONE, 2013, 8, 62916.
- Rafii, R., Juarez, M. M., Albertson, T. E. and Chan, A. L., A review of current and novel therapies for idiopathic pulmonary fibrosis. J. Thorac. Dis., 2013, 5, 48–73.
- Kagalwalla, A. F. et al., Eosinophilic esophagitis: epithelialmesenchymal transition contributes to esophageal remodeling and reverses with treatment. J. Allergy Clin. Immunol., 2012, 129, 1387–1396.
- Liu, W., Chen, X. L., Liu, J. H., Chen, C. and Ai, J., The effect of baicalein on bleomycin-induced fibrosis in lungs of rats. Chin. J. Appl. Physiol., 2009, 25, 145–149.
- Gao, Y., Lu, J., Zhang, Y., Chen, Y., Gu, Z. and Jiang, X., Baicalein attenuates bleomycin-induced pulmonary fibrosis in rats through inhibition of miR-21. Pulm. Pharmacol. Ther., 2013, 26, 649–654.
- Mabalirajan, U., Ahmad, T., Leishangthem, G. D., Joseph, D. A., Dinda, A. K., Agrawal, A. and Ghosh, B., Beneficial effects of high dose of L-arginine on airway hyperresponsiveness and airway inflammation in a murine model of asthma. J. Allergy Clin. Immunol., 2010, 125, 626–635.
- Hübner, R. H. et al., Standardized quantification of pulmonary fibrosis in histological samples. BioTechniques, 2008, 44, 507– 517.
- Shafiq-ur-Rehman, S., Lead-induced regional lipid peroxidation in brain. Toxicol. Lett., 1984, 21, 333–337.
- Madesh, M. and Balasubramanian, K. A., Microtitre plate assay for superoxide dismutase using MTT reduction by superoxide. Indian J. Biochem. Biophys., 1998, 35, 184–188.
- Singh, N. D. et al., Effect of feeding graded doses of citrinin on apoptosis and oxidative stress in male Wistar rats through the F1 generation. Toxicol. Ind. Health, 2013, 32, 385–397.
- Lomas, N. J., Watts, K. L., Akram, K. M., Forsyth, N. R. and Spiteri, M. A., Idiopathic pulmonary fibrosis: immunohistochemical analysis provides fresh insights into lung tissue remodelling with implications for novel prognostic markers. Int. J. Clin. Exp. Pathol., 2012, 5(1), 58–71.
- Leishangthem, G. D., Mabalirajan, U., Singh, V. P., Agrawal, A., Ghosh, B. and Dinda, A. K., Ultrastructural changes of airway in murine models of allergy and diet-induced metabolic syndrome. ISRN Allergy, 2013; doi:10,1155/2013/261297.
- Serhan, C. N. et al., Reduced inflammation and tissue damage in transgenic rabbits overexpressing 15-lipoxygenase and endogenous anti-inflammatory lipid mediators. J. Immunol., 2003, 171, 6856–6865.
- Goto, H., Ledford, J. G., Mukherjee, S., Noble, P. W., Williams, K. L. and Wright, J. R., The role of surfactant protein A in bleomycin induced acute lung injury. Am. J. Respir. Crit. Care Med., 2010, 181, 1336–1344.
- Mutsaers, S. E., Foster, M. L., Chambers, R. C., Laurent, G. J. and McAnulty R. J., Increased endothelin-1 and its localization during the development of bleomycin-induced pulmonary fibrosis in rats. Am. J. Respir. Cell. Mol. Biol., 1998, 18, 611–619.
- Dinda, B., Dinda, S., DasSharma, S., Banik, R., Chakraborty, A. and Dinda, M., Therapeutic potentials of baicalin and it’s aglycone, baicalein against inflammatory disorders. Eur. J. Med. Chem., 2017, 131, 68–80.
- Tanjore, H. et al., Contribution of epithelial-derived fibroblasts to bleomycin-induced lung fibrosis, Am. J. Respir. Crit. Care Med., 2009, 180, 657–665.
- Li, L. F. et al., Mechanical ventilation augments bleomycininduced epithelial–mesenchymal transition through the Src pathway. Lab. Invest., 2014, 94(9), 1017–1029.
- Geng, X., Dufu, K. and Hutchaleelaha, A., Increased hemoglobin–oxygen affinity ameliorates bleomycin‐induced hypoxemia and pulmonary fibrosis. Physiol. Rep., 2006; doi:10,14814/phy2,12965.
- Ware, L. B. and Matthay, M. A., Clinical practice, acute pulmonary edema. N. Engl. J. Med., 2005, 353, 2788–2796.
- Tsai, C. L., Lin, Y. C., Wang, H. M. and Chou, T. C., Baicalein, an active component of Scutellaria baicalensis, protects against lipopolysaccharide-induced acute lung injury in rats. J. Ethnopharmacol., 2014, 153, 197–206.
- Reutershan, J., Basit, A., Galkina, E. V. and Ley, K., Sequential recruitment of neutrophils into lung and bronchoalveolar lavage fluid in LPS-induced acute lung injury. Am. J. Physiol. – Lung Cell. Mol. Physiol., 2005, 289, 807–815.
- Grommes, J. and Soehnlein, O., Contribution of neutrophils to acute lung injury. Mol. Med., 2011, 17, 293–307.
- Agouridakis, P., Kyriakou, D., Alexandrakis, M. G., Prekates, A., Perisinakis, K., Karkavitsa, N. and Bouros, D., The predictive role of serum and bronchoalveolar lavage cytokines and adhesion molecules for acute respiratory distress syndrome development and outcome. Respir. Res., 2002, 3, 25.
- Bhatia, M. and Moochhala, S. J., Role of inflammatory mediators in the pathophysiology of acute respiratory distress syndrome. J. Pathol., 2004, 202, 145–156.
- Martin, W. J. and Kachel, D. L., Bleomycin-induced pulmonary endothelial cell injury: evidence for the role of iron-catalyzed toxic oxygen-derived species. J. Lab. Clin. Med., 1987, 110, 153–158.
- Yoshino, M. and Murakami, K., Interaction of iron with polyphenolic compounds: application to antioxidant characterization. Anal. Biochem., 1998, 257, 40–44.
Abstract Views: 412
PDF Views: 133