Open Access
Subscription Access
Manoeuvring Prospective Rhizosphere-Competent Bacteria for Invigorating Growth in Chickpea
The exploration for beneficial rhizosphere-competent bacteria commenced with screening isolated strains for plant growth-promoting attributes, including secretion of indole-3-acetic acid, gibberellins, 1-aminocyclopropane- 1-carboxylic acid deaminase, solubilization of phosphate and zinc. The secretion of flavonoid-like compounds revealed quantitative as well qualitative variability among the isolates as their culture supernatant exhibited several fluorescent compounds on TLC plates with different mobilities. Inoculation of seeds with effective isolates under axenic condition enhanced plant growth and induced flavanoids secretion from ischolar_mains, although the effect was only quantitative. The prospective bioinoculants exhibited competence in lieu of intrinsic antibiotic resistance, amylase production, biofilm formation, ischolar_main infectivity, salinity tolerance and exopolysaccharide production. Seed bacterization with potential isolates alone and in consortium with rhizobia stimulated growth of chickpea plants under controlled condition.
Keywords
Biofilms, Chickpea, Flavonoids, Plant Growth, Rhizobacteria.
User
Font Size
Information
- Ahmad, F. I., Ahmad, I. and Khan, M. S., Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol. Res., 2008, 163, 173–181.
- Lutenberg, B. and Kamivola, F., Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol., 2009, 63, 541–546.
- Vessey, J. K., Plant growth promoting rhizobacteria as biofertilizers. Plant Soil, 2003, 255, 571–586.
- Bent, E., Tuzun, S., Chanway, C. P. and Enebak, S., Alterations in plant growth and in ischolar_main hormone levels of lodgepole pines inoculated with rhizobacteria. Can. J. Microbiol., 2001, 47, 793–800.
- Nautiyal, C. S., An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett., 1999, 170, 265–270.
- Gordon, A. S. and Weber, R. P., Calorimetric estimation of indole acetic acid. Plant Physiol., 1951, 25, 192–195.
- Borrow, A. et al., Gibberellic acid, a metabolic product of the fungus Gibberella fujikuroi: some observations on its production and isolation. J. Sci. Food. Agric., 1955, 6, 340–348.
- Penrose, D. M. and Glick, B. R., Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol. Planta, 2003, 1, 10–15.
- Zhishen, J., Mengcheng, T. and Jianming, W., The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem., 1999, 64, 555–559.
- Parmar, N. and Dadarwal, K. R., Stimulation of nitrogen fixation and induction of flavonoid like compounds by rhizobacteria. J. Appl. Microbiol., 1999, 86, 36–44.
- Bauer, A. W., Kirby, W. M., Sherris, J. C. and Turck, M., Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol., 1996, 45, 493–496.
- Bernfeld, P., Enzymes of starch degradation and synthesis. Adv. Enzymol., 1951, 12, 379–481.
- Haggag, W. M. and Timmusk, S., Colonization of peanut ischolar_mains by biofilm forming Paenibacillus polymyxa initiates biocontrol against crown rot disease. J. Appl. Microbiol., 2008, 104, 961– 969.
- Zahir, Z. A., Shah, M. K., Naveed, M. and Akhter, M. J., Substrate dependent auxin production by Rhizobium phaseoli improves the growth and yield of Vigna radiata L. under salt stress conditions. J. Microbiol. Biotechnol., 2010, 20, 1288–1294.
- De Vuyst, L., Vanderveken, F., Van de ven, S. and Degeest, B., Production by and isolation of exopolysaccharides from Streptococcus thermophilus grown in milk medium and evidence for their growth associated biosynthesis. J. Appl. Microbiol., 1998, 8, 1059–1068.
- Verhoef, R., Waard, P. D., Schols, H. A., Siika-aho, M. and Voragen, A. G. J., Methylobacterium sp. isolated from a Finnish paper machine produces highly pyruvate galactan exopolysaccharide. Carbohydr. Res., 2003, 338, 1851–1859.
- Berg, G., Zachow, C., Lottmann, J., Gotz, M., Costa, R. and Smalla, K., Impact of plant species and site on rhizosphereassociated fungi antagonistic to Verticillium dahlia Kleb. Appl. Environ. Microbiol., 2009, 71, 4203–4213.
- Kumari, P., Khanna, V. and Kumar, P., Multifaceted rhizobacteria mediated growth augmentation in chickpea. Agric. Res., 2017; doi:10.1007/s40003-017-0275-5.
- Altomare, C., Norvell, W. A., Bjorkma, T. and Harman, G. E., Solubilization of phosphates and micronutrients by the plant– growth–promoting and biocontrol fungus Trichoderma harzianum. Appl. Environ. Microbiol., 1999, 65, 2926–2933.
- Suseelendra, D., Parveen, K. G., Uzma, S., Sravani, P., Mir, H. A. S. K., Leo, D. A. E. and Gopal, R., Potential microbial candiadate strains for management of nutrient requirements of crops. Afr. J. Microbiol. Res., 2012, 6, 3924–3931.
- Spaepen, S., Vanderleyden, J. and Remans, R., Indole-3-acetic acid in microbial and microorganism–plant signaling. FEMS Microbiol. Rev., 2007, 31, 425–448.
- Patten, C. L. and Glick, B. R., Role of Pseudomonas putida indole acetic acid in development of the host plant ischolar_main system. Appl. Environ. Microbiol., 2002, 68, 3795–3801.
- Bottini, R., Cassán, F. and Piccoli, P., Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl. Microbiol. Biotechnol., 2004, 65, 497–503.
- Probanza, A., García, J. A. L., Palomino, M. R., Ramos, B. and Manero, F. J. G., Pinus pinea L. seedling growth and bacterial rhizosphere structure after inoculation with PGPR Bacillus (B. licheniformis CECT 5106 and B. pumilus CECT 5105). Appl. Soil. Ecol. 2002, 20, 75–84.
- Ali, S. Z., Sadhya, V. and Rao, L. V., Isolation and characterization of drought-tolerant ACC deaminase and exopolysaccharide-producing fluorescent Pseudomonas sp. Ann. Microbiol., 2013, 64, 492–502.
- Hontzeas, N., Richardson, A. O., Belimov, A., Safronova, V., Abu-Omar, M. M. and Glick, B. R., Evidence for horizontal transfer of 1-aminocyclopropane-1-carboxylate deaminase genes. Appl. Environ. Microbiol., 2005, 71, 7556–7558.
- Oldroyd, G. E. and Downie, J. A., Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu. Rev. Plant. Biol., 2008, 59, 519–546.
- Russelle, M. P., Biological dinitrogen fixation in agriculture. In Nitrogen in Agricultural Systems (eds Schepers, J. S. and Raun, W. R.), Agronomy Monograph, 2008, 2nd edn, pp. 281–359.
- Andrade, G., Deleij, F. A. and Lynch, J. M., Plant mediated interactions between Pseudomonas fluorescens, Rhizobium leguminosarum and arbuscular mycorrhizae on pea. Lett. Appl. Microbiol., 1998, 26, 311–316.
- Van peer, R., Niemann, G. J. and Schippers, B., Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation of Pseudomonas sp. WCS417r. Phytopathology, 1991, 81, 726–730.
- Hemissi, I., Mabrouk, Y., Abdi, N., Bouraoui, M., Saidi, M. and Sifi, B., Effects of some Rhizobium strains on chickpea growth and biological control of Rhizoctonia solani. Afr. J. Microbiol. Res., 2011, 5, 4080–4090.
- Martínez-Viveros, O., Jorquera, M. A., Crowley, D. E., Gajardo, G. and Mora, M. L., Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J. Soil Sci. Plant. Nutr., 2010, 10, 293–319.
- Yasmin, F., Othman, R., Sijam, K. and Saad, M. S., Characterization of beneficial properties of plant growth promoting rhizobacteria isolated from sweet potato rhizosphere. Afr. J. Microbiol. Res., 2009, 3, 815–821.
- Marco, J. S. D., Inglis, M. C. V. and Felix, C. R., Production of hydrolytic enzymes by Trichoderma isolates with antagonistic activity against Crinipellis pereniciosa, the causal agent of whitches broom of cocoa. Braz. J. Microbiol., 2003, 34, 33–38.
- Azevedo, A. M. C., De Marco, J. L. and Felix, C. R., Characterization of an amylase produced by a Trichoderma harzianum isolate with antagonistic activity against Crinipellis perniciosa, the causal agent of witches’ broom of cocoa. FEMS Microbiol. Lett., 2000, 188, 171–175.
- Davey, M. E. and O’Toole, G. A., Microbial biofilms: from ecology to molecular genetics. Microbiol. Mol. Biol. Rev., 2000, 64, 847–867.
- Friedman, L. and Kolter, R., Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms. Mol. Microbiol., 2004, 51, 675–690.
- Simons, M., van der Bij, A. J., Brand, I., de Weger, L. A., Wijffelman, C. A. and Lugtenberg, B. J. J., Gnotobiotic system for studying rhizosphere colonization by plant growth-promoting Pseudomonas bacteria. Mol. Plant–Microbe. Interact., 1996, 9, 600–607.
- Paul, D. and Nair, S., Stress adaptations in a plant growth promoting rhizobacterium (PGPR) with increasing salinity in the coastal agricultural soils. J. Basic Microbiol., 2008, 48, 378–384.
- Bogino, P. C., Oliva, M. M., Sorroche, G. F. and Giordano, W., The role of bacterial biofilms and surface components in plant– bacterial associations. Int. J. Mol. Sci., 2013, 14, 15838–15859.
Abstract Views: 271
PDF Views: 133