The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


Several self-centering systems have been developed and tested so far, and all of them confront problems. Several problems like stress relaxation, elongation capacity and high post-yield stiffness are some of the problems, which should be addressed. The aim of this study is to find a solution to these problems. To this end, a new pre-compressed self-centering system has been proposed, tested and studied. Pre-compressed springs have been used to provide the required restoring force. Since the spring is under pressure and it has a high elastic capacity, the problem related to limited elongation capacity no longer exists. The experimental result indicates that the proposed self-centering brace has complete self-centering behaviour and low postyield stiffness. The proposed self-centering system produces less secondary stiffness compared to other systems. The effect of secondary stiffness on the drift and base shear was studied. Results of the numerical models indicate that high secondary stiffness does not decrease the drift of the structure, it only increases the base shear. Therefore, to attain an economical design, using the proposed self-centering system with slight secondary stiffness is suggested.

Keywords

Bracing, Earthquake, Pre-Compression, Selfcentering, Spring, Steel Structures.
User
Notifications
Font Size