Open Access Open Access  Restricted Access Subscription Access

Dominance of Natural Aerosols Over India In Pre-Monsoon: Inferences From the Lockdown Effects


Affiliations
1 National Remote Sensing Centre, Indian Space Research Organisation, Hyderabad 500 037, India
 

Changes in absorbing and composite aerosols over India during the first phase of lockdown are examined, using multi-satellite observations. While MODIS shows –16.17  1.35% reduction in AOD over the Indian landmass, OMI shows a decrease of –22.4  1.36% (–26.2  1.17%) in AOD (AAOD). Considerable fraction of this AOD difference is contributed by the changes in aerosols at higher altitudes. While reduc-tion in AOD of –38.05  1.06% (–39.4  1.12), –23.02  2.63% (–17.08  2.12) and –18.98  2.86% (–28.38  2.39%) is observed over IGP, Northwest and Southern Peninsula respectively from MODIS (OMI), enhance-ment in AOD of 5.16  2.44% (6.82  2.86%) is seen over Centralwest India. Reduction in absorbing aero-sols over IGP is –39.18  1.25%, whereas that over Southern Peninsula is –33.1  2.03%. These changes are significantly contributed by the changes in dust aerosols, in addition to the decrease in anthropogenic aerosols. Though there is a reduction in aerosol load-ing, compared to previous years, gradual increase in AOD and AAOD is seen even during the lockdown period due to strengthening of dust transport. More-over, the reduction in total (absorbing) aerosol load-ing over India during the lockdown phase is only 20% (26%), with significant contribution from higher alti-tudes, even in the absence of major anthropogenic sources. These results show the dominance of natural aerosols over India during pre-monsoon.

Keywords

Absorbing Aerosols, Anthropogenic Aero-sols, COVID-19, Dust, Forest Fire, Lockdown, Natural Aero-sols.
User
Notifications
Font Size

  • Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., Coakley Jr, J. A., Hansen, J. E. and Hofmann, D. J., Climate forcing by an-thropogenic aerosols. Science, 1992, 255, 423–430.
  • Russell, P. B., Hobbs, P. V. and Stowe, L. L., Aerosol properties and radiative effects in the United States east coast haze plume: An overview of the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX). J. Geophys. Res., 1999, 104(D2), 2213–2222.
  • IPCC (Intergovernmental Panel for Climate Change), Climate Change 2013: The Physical Science Basis, Cambridge University Press, Cambridge, 2014.
  • McCormick, R. and Ludwig, J., Climate modification by atmos-pheric aerosols. Science, 1967, 156(3780), 1358–1359.
  • Charlson, R. and Pilat, M., Climate: The influence of aerosols. J. Appl. Meteorol., 1969, 8, 1001–1002.
  • Coakley Jr, J. A., Cess, R. D. and Yurevich, F. B., The effect of tropospheric aerosols on the Earth’s radiation budget: A parame-terization for climate models. J. Atmos. Sci., 1983, 40, 116–138.
  • Twomey, S., The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 1977, 34, 1149–1152.
  • IPCC (Intergovernmental Panel for Climate Change), Climate Change 2007: The Physical Science Basis, Cambridge, United Kingdom, 2007.
  • Carslaw, K. S. et al., Large contribution of natural aerosols to uncertainty in indirect forcing. Nature, 2013, 503(7474), 67–71.
  • Rosenfeld, D., Wood, R., Donner, L. J. and Sherwood, S. C., Aer-osol cloud-mediated radiative forcing: highly uncertain and oppo-site effects from shallow and deep clouds. In Climate Science for Serving Society, Springer, Dordrecht, 2013, pp. 105–149.
  • Penner, J. E. et al., Quantifying and minimizing uncertainty of climate forcing by anthropogenic aerosols. Bull. Am. Meteorol. Soc., 1994, 75(3), 375–400.
  • Prospero, J. M. et al., The atmospheric aerosol system: an over-view. Rev. Geophys. Space Phys., 1983, 21(7), 1607–1629.
  • Moorthy, K. K., Babu, S. S., Manoj, M. R. and Satheesh, S. K., Build up of aerosols over the Indian region. Geophys. Res. Lett., 2013, 50, 1011–1014.
  • Prijith, S. S., Babu, S. S., Lakshmi, N. B., Satheesh, S. K. and Moorthy, K. K., Meridional gradients in aerosol vertical distribu-tion over Indian mainland: Observations and model simulations. Atmos. Environ., 2016, 125, 338–345.
  • Prijith, S. S., Rao, P. V. N., Mohan, M., Sai, M. V. R. S. and Ramana, M. V., Trends of absorption, scattering and total aerosol optical depths over India and surrounding oceanic regions from satellite observations: Role of local production, transport and atmospheric dynamics. Environ. Sci. Poll. Res., 2018, 25(18), 18147–18160.
  • Satheesh, S. K. and Moorthy, K. K., Radiative effects of natural aerosols: A review. Atmos. Environ., 2005, 39(11), 2089–2110.
  • Ramachandran, S., Srivastava, R., Kedia, S. and Rajesh, T. A., Contribution of natural and anthropogenic aerosols to optical properties and radiative effects over an urban location. Environ. Res. Lett., 2012, 7(3), 034028.
  • Nair, P. R., Parameswaran, K., Sunilkumar, S. V., Abraham, A. and Jacob, S., Chemical composition of atmospheric aerosols over the Indian Ocean: impact of continental advection. Adv. Space Res., 2004, 34(4), 828–832.
  • Nair, V. S., Satheesh, S. K., Moorthy, K. K., Babu, S. S., Nair, P. R. and George, S. K., Surprising observation of large anthropo-genic aerosol fraction over the ‘near‐pristine’ southern Bay of Bengal: Climate implications. J. Geophys. Res., 2010, 115(D21), 1–10.
  • Omar, A. H. et al., The CALIPSO automated aerosol classification and lidar ratio selection algorithm. J. Atmos. Oceanic Tech., 2009, 26(10), 1994–2014.
  • Mao, Q., Huang, C., Chen, Q., Zhang, H. and Yuan, Y., Satellite-based identification of aerosol particle species using a 2D-space aerosol classification model. Atmos. Environ., 2019, 219, 117057.
  • Allen, R. J. and Sherwood, S. C., The impact of natural versus an-thropogenic aerosols on atmospheric circulation in the Community Atmosphere Model. Clim. Dyn., 2011, 36(9–10), 1959–1978.
  • Latha, K. M., Badarinath, K. V. S. and Moorthy, K. K., Impact of diesel vehicular emissions on ambient black carbon concentration at an urban location in India. Curr. Sci., 2004, 86(3), 451–453.
  • Kompalli, S. K., Moorthy, K. K. and Babu, S. S., Rapid response of atmospheric BC to anthropogenic sources: observational evi-dence. Atmos. Sci. Let., 2014, 15(3), 166–171.
  • Mahalakshmi, D. V., Sujatha, P., Naidu, C. V. and Chowdary, V. M., Response of vehicular emissions to air pollution and radiation A case study during public strike in Hyderabad, India. Sustaine. Environ. Res., 2015, 25(4), 227–234.
  • Kaufman, Y. J. et al., Passive remote sensing of tropospheric aer-osol and atmospheric correction for the aerosol effect. J. Geophys. Res., 1997, 102(D14), 16815–16830.
  • Ichoku, C., Kaufman, Y. J., Remer, L. A. and Levy, R., Global aerosol remote sensing from MODIS. Adv. Space. Res., 2004, 34(4), 820–827.
  • Remer, L. A. et al., The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci., 2005, 62(4), 947–973.
  • Torres, O. et al., Aerosols and surface UV products from Ozone Monitoring Instrument observations: an overview. J. Geophys. Res., 2007, 112(D24), 1–14.
  • Stephens, G. L. et al., The CloudSat mission and the A-Train: A new dimension of space-based observations of clouds and precipi-tation. Bull. Am. Meteorol. Soc., 2002, 83(12), 1771–1790.
  • Livingston, J. M. et al., Comparison of aerosol optical depths from the Ozone Monitoring Instrument (OMI) on Aura with results from airborne sunphotometry, other space and ground measure-ments during MILAGRO/INTEX-B. Atmos. Chem. Phys., 2009, 9(18), 6743–6765.
  • Winker, D. M., Hunt, W. H. and McGill, M. J., Initial perfor-mance assessment of CALIOP. Geophys. Res. Lett., 2007, 34, L19803.
  • Giglio, L., Schroeder, W. and Justice, C. O., The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ., 2016, 178, 31–41.
  • Li, J., Carlson, B. E. and Lacis, A. A., Application of spectral analysis techniques in the intercomparison of aerosol data: Part III. Using combined PCA to compare spatiotemporal variability of MODIS, MISR, and OMI aerosol optical depth. J. Geophys. Res., 2014, 119(7), 4017–4042.
  • Babu, S. S. et al., Free tropospheric black carbon aerosol meas-urements using high altitude balloon: Do BC layers build ‘their own homes’ up in the atmosphere? Geophys. Res. Lett., 2011, 38(8), L08803(1–6).
  • Govardhan, G., Satheesh, S. K., Nanjundiah, R., Moorthy, K. K., and Babu, S. S., Possible climatic implications of high-altitude black carbon emissions. Atmos. Chem. Phys., 2017, 17(15), 9623.
  • Aloysius, M., Sijikumar, S., Prijith, S. S., Mohan, M. and Parameswaran, K., Role of dynamics in the advection of aerosols over the Arabian Sea along the west coast of peninsular India dur-ing pre-monsoon season: A case study based on satellite data and regional climate model. J. Earth Syst. Sci., 2011, 120(2), 269–279.
  • Prijith, S. S., Rajeev, K., Thampi, B. V., Nair, S. K. and Mohan, M., Multi-year observations of the spatial and vertical distribution of aerosols and the genesis of abnormal variations in aerosol load-ing over the Arabian Sea during Asian Summer Monsoon Season. J. Atmos. Sol. Terr. Phys., 2013, 105, 142–151.
  • Prijith, S. S., Rao, P. V. N. and Mohan, M., Genesis of elevated aerosol loading over the India region. SPIE Asia Pac. Rem. Sens., 2016, 988208, 1–11.
  • Babu, S. S. et al., Trends in aerosol optical depth over Indian region: Potential causes and impact indicators. J. Geophys. Res., 2013, 118(20), 11–794.
  • Vinoj, V., Rasch, P. J., Wang, H., Yoon, J. H., Ma, P. L., Landu, K. and Singh, B., Short-term modulation of Indian summer mon-soon rainfall by West Asian dust. Nature Geosci., 2014, 7(4), 308–13.
  • Deepshikha, S., Satheesh, S. K. and Srinivasan, J., Regional dis-tribution of absorbing efficiency of dust aerosols over India and adjacent continents inferred using satellite remote sensing. Ge-ophys. Res. Lett., 2005, 32(3), L03811(1–4).
  • Moorthy, K. K., Babu, S. S., Satheesh, S. K., Srinivasan, J. and Dutt, C. B. S., Dust absorption over the ‘Great Indian Desert’ inferred using ground‐based and satellite remote sensing. J. Ge-ophys. Res., 2007, 112(D9), 1–10.
  • Sahu, L. K., Sheel, V., Pandey, K., Yadav, R., Saxena, P. and Gunthe, S., Regional biomass burning trends in India: Analysis of satellite fire data. J. Earth Syst. Sci., 2015, 124(7), 1377–1387.
  • Ellicott, E., Vermote, E., Giglio, L. and Roberts, G., Estimating biomass consumed from fire using MODIS FRE. Geophys. Res. Lett., 2009, 36, L13401.
  • Freeborn, P. H., Wooster, M. J., Roy, D. P. and Cochrane, M. A., Quantification of MODIS fire radiative power (FRP) measurement uncertainty for use in satellite-based active fire characterization and biomass burning estimation. Geophys. Res. Lett., 2014, 41, 1988–1994.
  • Giglio, L., Schroeder, W., Hall, J. V. and Justice, C. O., Modis collection 6 active fire product user’s guide revision A, Depart-ment of Geographical Sciences, University of Maryland, 2015.

Abstract Views: 380

PDF Views: 130




  • Dominance of Natural Aerosols Over India In Pre-Monsoon: Inferences From the Lockdown Effects

Abstract Views: 380  |  PDF Views: 130

Authors

S. S. Prijith
National Remote Sensing Centre, Indian Space Research Organisation, Hyderabad 500 037, India
J. Srinivasulu
National Remote Sensing Centre, Indian Space Research Organisation, Hyderabad 500 037, India
M. V. R. Sesha Sai
National Remote Sensing Centre, Indian Space Research Organisation, Hyderabad 500 037, India

Abstract


Changes in absorbing and composite aerosols over India during the first phase of lockdown are examined, using multi-satellite observations. While MODIS shows –16.17  1.35% reduction in AOD over the Indian landmass, OMI shows a decrease of –22.4  1.36% (–26.2  1.17%) in AOD (AAOD). Considerable fraction of this AOD difference is contributed by the changes in aerosols at higher altitudes. While reduc-tion in AOD of –38.05  1.06% (–39.4  1.12), –23.02  2.63% (–17.08  2.12) and –18.98  2.86% (–28.38  2.39%) is observed over IGP, Northwest and Southern Peninsula respectively from MODIS (OMI), enhance-ment in AOD of 5.16  2.44% (6.82  2.86%) is seen over Centralwest India. Reduction in absorbing aero-sols over IGP is –39.18  1.25%, whereas that over Southern Peninsula is –33.1  2.03%. These changes are significantly contributed by the changes in dust aerosols, in addition to the decrease in anthropogenic aerosols. Though there is a reduction in aerosol load-ing, compared to previous years, gradual increase in AOD and AAOD is seen even during the lockdown period due to strengthening of dust transport. More-over, the reduction in total (absorbing) aerosol load-ing over India during the lockdown phase is only 20% (26%), with significant contribution from higher alti-tudes, even in the absence of major anthropogenic sources. These results show the dominance of natural aerosols over India during pre-monsoon.

Keywords


Absorbing Aerosols, Anthropogenic Aero-sols, COVID-19, Dust, Forest Fire, Lockdown, Natural Aero-sols.

References





DOI: https://doi.org/10.18520/cs%2Fv120%2Fi2%2F352-359