Open Access
Subscription Access
Dominance of Natural Aerosols Over India In Pre-Monsoon: Inferences From the Lockdown Effects
Changes in absorbing and composite aerosols over India during the first phase of lockdown are examined, using multi-satellite observations. While MODIS shows –16.17 1.35% reduction in AOD over the Indian landmass, OMI shows a decrease of –22.4 1.36% (–26.2 1.17%) in AOD (AAOD). Considerable fraction of this AOD difference is contributed by the changes in aerosols at higher altitudes. While reduc-tion in AOD of –38.05 1.06% (–39.4 1.12), –23.02 2.63% (–17.08 2.12) and –18.98 2.86% (–28.38 2.39%) is observed over IGP, Northwest and Southern Peninsula respectively from MODIS (OMI), enhance-ment in AOD of 5.16 2.44% (6.82 2.86%) is seen over Centralwest India. Reduction in absorbing aero-sols over IGP is –39.18 1.25%, whereas that over Southern Peninsula is –33.1 2.03%. These changes are significantly contributed by the changes in dust aerosols, in addition to the decrease in anthropogenic aerosols. Though there is a reduction in aerosol load-ing, compared to previous years, gradual increase in AOD and AAOD is seen even during the lockdown period due to strengthening of dust transport. More-over, the reduction in total (absorbing) aerosol load-ing over India during the lockdown phase is only 20% (26%), with significant contribution from higher alti-tudes, even in the absence of major anthropogenic sources. These results show the dominance of natural aerosols over India during pre-monsoon.
Keywords
Absorbing Aerosols, Anthropogenic Aero-sols, COVID-19, Dust, Forest Fire, Lockdown, Natural Aero-sols.
User
Font Size
Information
- Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., Coakley Jr, J. A., Hansen, J. E. and Hofmann, D. J., Climate forcing by an-thropogenic aerosols. Science, 1992, 255, 423–430.
- Russell, P. B., Hobbs, P. V. and Stowe, L. L., Aerosol properties and radiative effects in the United States east coast haze plume: An overview of the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX). J. Geophys. Res., 1999, 104(D2), 2213–2222.
- IPCC (Intergovernmental Panel for Climate Change), Climate Change 2013: The Physical Science Basis, Cambridge University Press, Cambridge, 2014.
- McCormick, R. and Ludwig, J., Climate modification by atmos-pheric aerosols. Science, 1967, 156(3780), 1358–1359.
- Charlson, R. and Pilat, M., Climate: The influence of aerosols. J. Appl. Meteorol., 1969, 8, 1001–1002.
- Coakley Jr, J. A., Cess, R. D. and Yurevich, F. B., The effect of tropospheric aerosols on the Earth’s radiation budget: A parame-terization for climate models. J. Atmos. Sci., 1983, 40, 116–138.
- Twomey, S., The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 1977, 34, 1149–1152.
- IPCC (Intergovernmental Panel for Climate Change), Climate Change 2007: The Physical Science Basis, Cambridge, United Kingdom, 2007.
- Carslaw, K. S. et al., Large contribution of natural aerosols to uncertainty in indirect forcing. Nature, 2013, 503(7474), 67–71.
- Rosenfeld, D., Wood, R., Donner, L. J. and Sherwood, S. C., Aer-osol cloud-mediated radiative forcing: highly uncertain and oppo-site effects from shallow and deep clouds. In Climate Science for Serving Society, Springer, Dordrecht, 2013, pp. 105–149.
- Penner, J. E. et al., Quantifying and minimizing uncertainty of climate forcing by anthropogenic aerosols. Bull. Am. Meteorol. Soc., 1994, 75(3), 375–400.
- Prospero, J. M. et al., The atmospheric aerosol system: an over-view. Rev. Geophys. Space Phys., 1983, 21(7), 1607–1629.
- Moorthy, K. K., Babu, S. S., Manoj, M. R. and Satheesh, S. K., Build up of aerosols over the Indian region. Geophys. Res. Lett., 2013, 50, 1011–1014.
- Prijith, S. S., Babu, S. S., Lakshmi, N. B., Satheesh, S. K. and Moorthy, K. K., Meridional gradients in aerosol vertical distribu-tion over Indian mainland: Observations and model simulations. Atmos. Environ., 2016, 125, 338–345.
- Prijith, S. S., Rao, P. V. N., Mohan, M., Sai, M. V. R. S. and Ramana, M. V., Trends of absorption, scattering and total aerosol optical depths over India and surrounding oceanic regions from satellite observations: Role of local production, transport and atmospheric dynamics. Environ. Sci. Poll. Res., 2018, 25(18), 18147–18160.
- Satheesh, S. K. and Moorthy, K. K., Radiative effects of natural aerosols: A review. Atmos. Environ., 2005, 39(11), 2089–2110.
- Ramachandran, S., Srivastava, R., Kedia, S. and Rajesh, T. A., Contribution of natural and anthropogenic aerosols to optical properties and radiative effects over an urban location. Environ. Res. Lett., 2012, 7(3), 034028.
- Nair, P. R., Parameswaran, K., Sunilkumar, S. V., Abraham, A. and Jacob, S., Chemical composition of atmospheric aerosols over the Indian Ocean: impact of continental advection. Adv. Space Res., 2004, 34(4), 828–832.
- Nair, V. S., Satheesh, S. K., Moorthy, K. K., Babu, S. S., Nair, P. R. and George, S. K., Surprising observation of large anthropo-genic aerosol fraction over the ‘near‐pristine’ southern Bay of Bengal: Climate implications. J. Geophys. Res., 2010, 115(D21), 1–10.
- Omar, A. H. et al., The CALIPSO automated aerosol classification and lidar ratio selection algorithm. J. Atmos. Oceanic Tech., 2009, 26(10), 1994–2014.
- Mao, Q., Huang, C., Chen, Q., Zhang, H. and Yuan, Y., Satellite-based identification of aerosol particle species using a 2D-space aerosol classification model. Atmos. Environ., 2019, 219, 117057.
- Allen, R. J. and Sherwood, S. C., The impact of natural versus an-thropogenic aerosols on atmospheric circulation in the Community Atmosphere Model. Clim. Dyn., 2011, 36(9–10), 1959–1978.
- Latha, K. M., Badarinath, K. V. S. and Moorthy, K. K., Impact of diesel vehicular emissions on ambient black carbon concentration at an urban location in India. Curr. Sci., 2004, 86(3), 451–453.
- Kompalli, S. K., Moorthy, K. K. and Babu, S. S., Rapid response of atmospheric BC to anthropogenic sources: observational evi-dence. Atmos. Sci. Let., 2014, 15(3), 166–171.
- Mahalakshmi, D. V., Sujatha, P., Naidu, C. V. and Chowdary, V. M., Response of vehicular emissions to air pollution and radiation A case study during public strike in Hyderabad, India. Sustaine. Environ. Res., 2015, 25(4), 227–234.
- Kaufman, Y. J. et al., Passive remote sensing of tropospheric aer-osol and atmospheric correction for the aerosol effect. J. Geophys. Res., 1997, 102(D14), 16815–16830.
- Ichoku, C., Kaufman, Y. J., Remer, L. A. and Levy, R., Global aerosol remote sensing from MODIS. Adv. Space. Res., 2004, 34(4), 820–827.
- Remer, L. A. et al., The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci., 2005, 62(4), 947–973.
- Torres, O. et al., Aerosols and surface UV products from Ozone Monitoring Instrument observations: an overview. J. Geophys. Res., 2007, 112(D24), 1–14.
- Stephens, G. L. et al., The CloudSat mission and the A-Train: A new dimension of space-based observations of clouds and precipi-tation. Bull. Am. Meteorol. Soc., 2002, 83(12), 1771–1790.
- Livingston, J. M. et al., Comparison of aerosol optical depths from the Ozone Monitoring Instrument (OMI) on Aura with results from airborne sunphotometry, other space and ground measure-ments during MILAGRO/INTEX-B. Atmos. Chem. Phys., 2009, 9(18), 6743–6765.
- Winker, D. M., Hunt, W. H. and McGill, M. J., Initial perfor-mance assessment of CALIOP. Geophys. Res. Lett., 2007, 34, L19803.
- Giglio, L., Schroeder, W. and Justice, C. O., The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ., 2016, 178, 31–41.
- Li, J., Carlson, B. E. and Lacis, A. A., Application of spectral analysis techniques in the intercomparison of aerosol data: Part III. Using combined PCA to compare spatiotemporal variability of MODIS, MISR, and OMI aerosol optical depth. J. Geophys. Res., 2014, 119(7), 4017–4042.
- Babu, S. S. et al., Free tropospheric black carbon aerosol meas-urements using high altitude balloon: Do BC layers build ‘their own homes’ up in the atmosphere? Geophys. Res. Lett., 2011, 38(8), L08803(1–6).
- Govardhan, G., Satheesh, S. K., Nanjundiah, R., Moorthy, K. K., and Babu, S. S., Possible climatic implications of high-altitude black carbon emissions. Atmos. Chem. Phys., 2017, 17(15), 9623.
- Aloysius, M., Sijikumar, S., Prijith, S. S., Mohan, M. and Parameswaran, K., Role of dynamics in the advection of aerosols over the Arabian Sea along the west coast of peninsular India dur-ing pre-monsoon season: A case study based on satellite data and regional climate model. J. Earth Syst. Sci., 2011, 120(2), 269–279.
- Prijith, S. S., Rajeev, K., Thampi, B. V., Nair, S. K. and Mohan, M., Multi-year observations of the spatial and vertical distribution of aerosols and the genesis of abnormal variations in aerosol load-ing over the Arabian Sea during Asian Summer Monsoon Season. J. Atmos. Sol. Terr. Phys., 2013, 105, 142–151.
- Prijith, S. S., Rao, P. V. N. and Mohan, M., Genesis of elevated aerosol loading over the India region. SPIE Asia Pac. Rem. Sens., 2016, 988208, 1–11.
- Babu, S. S. et al., Trends in aerosol optical depth over Indian region: Potential causes and impact indicators. J. Geophys. Res., 2013, 118(20), 11–794.
- Vinoj, V., Rasch, P. J., Wang, H., Yoon, J. H., Ma, P. L., Landu, K. and Singh, B., Short-term modulation of Indian summer mon-soon rainfall by West Asian dust. Nature Geosci., 2014, 7(4), 308–13.
- Deepshikha, S., Satheesh, S. K. and Srinivasan, J., Regional dis-tribution of absorbing efficiency of dust aerosols over India and adjacent continents inferred using satellite remote sensing. Ge-ophys. Res. Lett., 2005, 32(3), L03811(1–4).
- Moorthy, K. K., Babu, S. S., Satheesh, S. K., Srinivasan, J. and Dutt, C. B. S., Dust absorption over the ‘Great Indian Desert’ inferred using ground‐based and satellite remote sensing. J. Ge-ophys. Res., 2007, 112(D9), 1–10.
- Sahu, L. K., Sheel, V., Pandey, K., Yadav, R., Saxena, P. and Gunthe, S., Regional biomass burning trends in India: Analysis of satellite fire data. J. Earth Syst. Sci., 2015, 124(7), 1377–1387.
- Ellicott, E., Vermote, E., Giglio, L. and Roberts, G., Estimating biomass consumed from fire using MODIS FRE. Geophys. Res. Lett., 2009, 36, L13401.
- Freeborn, P. H., Wooster, M. J., Roy, D. P. and Cochrane, M. A., Quantification of MODIS fire radiative power (FRP) measurement uncertainty for use in satellite-based active fire characterization and biomass burning estimation. Geophys. Res. Lett., 2014, 41, 1988–1994.
- Giglio, L., Schroeder, W., Hall, J. V. and Justice, C. O., Modis collection 6 active fire product user’s guide revision A, Depart-ment of Geographical Sciences, University of Maryland, 2015.
Abstract Views: 351
PDF Views: 111