Open Access
Subscription Access
Inundation Mapping of Kerala Flood Event in 2018 using ALOS-2 and Temporal Sentinel-1 SAR Images
In August 2018, the southern Indian state of Kerala received unusually heavy rainfall leading to largescale flooding and destruction. Reliable flood inundation maps derived from remote sensing techniques help in flood disaster management activities. The freely available Sentinel-1A/B SAR data have the potential for flood inundation mapping due to its all-weather imaging capability. In this study, temporal dual-pol Sentinel-1 SAR data have been utilized. Single-date ALOS-2/PALSAR-2 commercial SAR data were also used to fill the gap between Sentinel-1 acquisitions during the peak flood-period. Two flood-mapping approaches, viz. rule-based classification in case of temporal SAR data and histogram-based thresholding approach in case of single-date imagery, were utilized in the study. Also, flood inundation mapping with different data constraints, i.e. availability of single-date and multi-date imagery has been analysed and discussed. The obtained results were validated with multiple data sources like survey data and secondary data from government agencies. An overall accuracy of 90.6% and a critical success index of 81.6% were achieved with the proposed rule-based classification approach. This study highlights the potential of the combination of Sentinel-1 and ALOS-2/PALSAR-2 data for flood inundation mapping.
Keywords
Disaster Management, Floods, Inundation Mapping, Remote Sensing, Rule-based Classification.
User
Font Size
Information
- Huang, X. et al., Flood hazard in hunan province of China: an economic loss analysis. Nat. Hazards, 2008, 47, 65–73.
- Rijal, S., Rimal, B. and Sloan, S., Flood hazard mapping of a rapidly urbanizing city in the foothills (Birendranagar, Surkhet) of Nepal. Land, 2018, 7, 60.
- Ologunorisa, T. and Abawua, M., Flood risk assessment: a review.J. Appl. Sci. Environ. Manage., 2005, 9, 57–63.
- Panhalkar, S. and Jarag, A. P., Flood risk assessment of Panchganga River (Kolhapur district, Maharashtra) using GIS-based multicriteria decision technique. Curr. Sci., 2017, 112, 785–793.
- Cleve, C., Kelly, M., Kearns, F. R. and Moritz, M., Classification of the wildland–urban interface: a comparison of pixel-and objectbased classifications using high-resolution aerial photography. Comput. Environ. Urban Syst., 2008, 32, 317–326.
- Horritt, M. S., Mason, D. C. and Luckman, A. J., Flood boundary delineation from Synthetic Aperture Radar imagery using a statistical active contour model. Int. J. Remote Sensing, 2001, 22, 2489–2507.
- Horritt, M., Waterline mapping in flooded vegetation from airborne SAR imagery. Remote Sensing Environ., 2003, 85, 271–281.
- Zhou, C., Luo, J., Yang, C., Li, B. and Wang, S., Flood monitoring using multi-temporal AVHRR and RADARSAT imagery. Photogrammetric Eng. Remote Sensing, 2000, 66(5), 633–638.
- Pierdicca, N., Pulvirenti, L., Boni, G., Squicciarino, G. and Chini, M., Mapping flooded vegetation using COSMO-SkyMed: comparison with polarimetric and optical data over rice fields. IEEE J. Selected Top. Appl. Earth Observ. Remote Sensing, 2017, 10, 2650–2662.
- Hess, L. L., Melack, J. M. and Simonett, D. S., Radar detection of flooding beneath the forest canopy: a review. Int. J. Remote Sensing, 1990, 11, 1313–1325.
- Hess, L. L., Melack, J. M. and Davis, F. W., Mapping of floodplain inundation with multi-frequency polarimetric SAR: use of a tree-based model. In Proceedings of IGARSS ’94 – IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 1994, pp. 1072–1073.
- Hess, L. L., Melack, J. M., Filoso, S. and Wang, Y., Delineation of inundated area and vegetation along the Amazon floodplain with the SIR-C synthetic aperture radar. IEEE Trans. Geosci. Remote Sensing, 1995, 33, 896–904.
- Hess, L. L. and Malack, J. M., Mapping floodplain vegetation in the central Amazon basin with multi-temporal SIR-C data. In IGARSS 98 – Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings (Cat. No.98CH36174), IEEE, Seattle, WA, USA, 1998, vol. 4, p. 2115.
- Hess, L., Dual-season mapping of wetland inundation and vegetation for the central Amazon basin. Remote Sensing Environ., 2003, 87, 404–428.
- Arnesen, A. S. et al., Monitoring flood extent in the lower Amazon River floodplain using ALOS/PALSAR ScanSAR images. Remote Sensing Environ., 2013, 130, 51–61.
- Alahacoon, N., Matheswaran, K., Pani, P. and Amarnath, G., A decadal historical satellite data and rainfall trend analysis (2001– 2016) for flood hazard mapping in Sri Lanka. Remote Sensing, 2018, 10, 448.
- Martinis, S. and Rieke, C., Backscatter analysis using multitemporal and multi-frequency SAR data in the context of flood mapping at River Saale, Germany. Remote Sensing, 2015, 7, 7732–7752.
- Pierdicca, N., Chini, M., Pulvirenti, L. and Macina, F., Integrating physical and topographic information into a Fuzzy scheme to map flooded area by SAR. Sensors, 2008, 8, 4151–4164.
- Pulvirenti, L., Pierdicca, N., Boni, G., Fiorini, M. and Rudari, R., Flood damage assessment through multitemporal COSMOSkyMed data and hydrodynamic models: the Albania 2010 case study. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sensing, 2014, 7, 2848–2855.
- Pulvirenti, L., Marzano, F. S., Pierdicca, N., Mori, S. and Chini, M., Discrimination of water surfaces, heavy rainfall and wet snow using COSMO-SkyMed observations of severe weather events. IEEE Trans. Geosci. Remote Sensing, 2014, 52, 858–869.
- Voormansik, K., Praks, J., Antropov, O., Jagomagi, J. and Zalite, K., Flood mapping with TerraSAR-X in forested regions in estonia. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sensing, 2014, 7, 562–577.
- Cao, H., Zhang, H., Wang, C. and Zhang, B., Operational flood detection using Sentinel-1 SAR data over large areas. Water, 2019, 11, 786.
- Anusha, N. and Bharathi, B., Flood detection and flood mapping using multi-temporal synthetic aperture radar and optical data. Egypt. J. Remote Sensing Space Sci., 2020, 23, 207–219.
- Kundu, S., Aggarwal, S., Kingma, N., Mondal, A. and Khare, D., Flood monitoring using microwave remote sensing in a part of Nuna river basin, Odisha, India. Natural Hazards, 2015, 76, 123– 138.
- Baghdadi, N., Bernier, M., Gauthier, R. and Neeson, I., Evaluation of C-band SAR data for wetlands mapping. Int. J. Remote Sensing, 2001, 22, 71–88.
- Greifeneder, F., Wagner, W., Sabel, D. and Naeimi, V., Suitability of SAR imagery for automatic flood mapping in the Lower Mekong basin. Int. J. Remote Sensing, 2014, 35, 2857–2874.
- Yulianto, F., Sofan, P., Zubaidah, A., Sukowati, K. A. D., Pasaribu, J. M. and Khomarudin, M. R., Detecting areas affected by flood using multi-temporal ALOS PALSAR remotely sensed data in Karawang, West Java, Indonesia. Nat. Hazards, 2015, 77, 959–985.
- Chini, M., Hostache, R., Giustarini, L. and Matgen, P., A hierarchical split-based approach for parametric thresholding of SAR images: flood inundation as a test case. IEEE Trans. Geosci. Remote Sensing, 2017, 55, 6975–6988.
- Giustarini, L., Hostache, R., Matgen, P., Schumann, G. J.-P., Bates, P. D. and Mason, D. C., A change detection approach to flood mapping in urban areas using TerraSAR-X. IEEE Trans. Geosci. Remote Sensing, 2013, 51, 2417–2430.
- Refice, A. et al., SAR and InSAR for flood monitoring: examples with COSMO-SkyMed data. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sensing, 2014, 7, 2711–2722.
- Pulvirenti, L., Chini, M., Pierdicca, N. and Boni, G., Use of SAR data for detecting floodwater in urban and agricultural areas: the role of the interferometric coherence. IEEE Trans. Geosci. Remote Sensing, 2016, 54, 1532–1544.
- Amitrano, D., Di Martino, G., Iodice, A., Riccio, D. and Ruello, G., Unsupervised rapid flood mapping using Sentinel-1 GRD SAR images. IEEE Trans. Geosci. Remote Sensing, 2018, 56, 3290– 3299.
- Martinis, S., Plank, S. and Ćwik, K., The use of Sentinel-1 timeseries data to improve flood monitoring in arid areas. Remote Sensing, 2018, 10, 583.
- Jo, M.-J., Osmanoglu, B., Zhang, B. and Wdowinski, S., Flood extent mapping using dual-polarimetric Sentinel-1 synthetic aperture radar imagery. ISPRS – Int. Arch. Photogramm., Remote Sensing Spat. Inf. Sci., 2018, XLII–3, 711–713.
- Tsyganskaya, V., Martinis, S., Marzahn, P. and Ludwig, R., Detection of temporary flooded vegetation using Sentinel-1 time series data. Remote Sensing, 2018, 10, 1286.
- Plank, S., Jüssi, M., Martinis, S. and Twele, A., Mapping of flooded vegetation by means of polarimetric Sentinel-1 and ALOS2/PALSAR-2 imagery. Int. J. Remote Sensing, 2017, 38, 3831–3850.
- Ramsar, Annotated list of wetlands of international importance, 2018; http://saconenvis.nic.in/publication/Ramsar-Sites-annotatedsummaryIndia.pdf
- India Meteorological Department, Performance of South West Monsoon 2018 over Kerala. Meteorological Centre, Thiruvananthapuram, 2018, pp. 1–16.
- Bhatt, C. M., Rao, G. S., Diwakar, P. G. and Dadhwal, V. K., Development of flood inundation extent libraries over a range of potential flood levels: a practical framework for quick flood response. Geomat., Nat. Hazards Risk, 2017, 8(2), 384–401.
- Chung, H.-W., Liu, C.-C., Cheng, I.-F., Lee, Y.-R. and Shieh, M.-C., Rapid response to a typhoon-induced flood with an SARderived map of inundated areas: case study and validation. Remote Sensing, 2015, 7, 11954–11973.
- Stephens, E., Schumann, G. and Bates, P., Problems with binary pattern measures for flood model evaluation. Hydrol. Process., 2014, 28, 4928–4937.
- Chaabani, C., Chini, M., Abdelfattah, R., Hostache, R. and Chokmani, K., Flood mapping in a complex environment using bistatic TanDEM-X/TerraSAR-X InSAR coherence. Remote Sensing, 2018, 10(12), 1873.
- Feng, Q., Liu, J. and Gong, J., Urban flood mapping based on unmanned aerial vehicle remote sensing and random forest classifier – a case of Yuyao, China. Water, 2015, 7, 1437–1455.
- Feng, Q., Gong, J., Liu, J. and Li, Y., Flood mapping based on multiple endmember spectral mixture analysis and random forest classifier – the case of Yuyao, China. Remote Sensing, 2015, 7, 12539–12562.
- CWC, Study Report: Kerala Flood of August 2018. Hydrological Studies Organization, Central Water Commission, Government of India, 2018, pp. 1–46.
Abstract Views: 325
PDF Views: 133