Agroforestry has great potential for carbon (C) sequestration among different land uses of the Himalayan region, India. However, our knowledge of C sequestration in particular, agroforestry system around the world is poor. Therefore, we conducted a study to understand biomass accumulation and carbon allocation in different components of the agroforestry system. The highest stem biomass was recorded in Eucalyptus tereticornis (69.43 ± 0.90 Mg ha–1), branch biomass in Populus deltoids (5.04 ± 0.35 Mg ha–1), leaf biomass also in P. deltoids (2.21 ± 0.12 Mg ha–1), and ischolar_main biomass in Albizia procera (14.01 ± 0.44 Mg ha–1). The highest (81.01%) C allocation was recorded in the stem of Toona ciliate, branch of P. deltoids (5.73%), leaves of E. tereticornis (2.93%) and ischolar_main of Anthocephalus cadamba (16.83%). The highest CO2< mitigation (160.5 ± 2.55 Mg CO2 ha–1) and C sequestration (45.33 ± 0.60 Mg ha–1) were recorded in E. tereticornis. The highest wheat crop biomass (11.85 ± 0.23 Mg ha–1) and C stock (3.59 ± 0.05 Mg ha–1) were recorded in P. deltiodes. However, soil carbon stock was recorded in E. tereticornis (37.5 ± 3.52 Mg ha–1). Thus, trees on farmlands with crops are suitable for biomass production and C allocation in different components under changing climatic scenarios.
Keywords
Agroforestry System, Biomass, Carbon Stock, Carbon Dioxide Mitigation, Climate Change.
User
Font Size
Information