The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


Heavy metals are persistent in nature and toxic to all life forms. Increase in industrialization, urbanization and unsafe agriculture practices is constantly adding heavy metals to the environment, and consequently causing heavy metal pollution of water and soil. Considering the negative impacts of heavy metals on the environment, several strategies have been devised to remediate them. However, most of these have their own limitations. Bioremediation of metals by microorganisms is efficient, cost-effective and environmentfriendly method of metal detoxification. Microbes can utilize metal contaminants as their energy source and transform them to less toxic forms. When exposed to metals for a considerable period of time, microorganisms interact with them and become tolerant by developing resistance mechanism against them. Metal– microbe interactions can occur in several ways such as biosorption, bioleaching, biomineralization, bioaccumulation and biotransformation. Study of these interactions is important to understand resistance mechanisms against metals which include barriers, efflux system, sequestration and reduction of metals. These mechanisms are encoded by the resistance genes localized in chromosomes and plasmids. Understanding resistance mechanisms against metals in microorganisms becomes crucial for devising strategies for bioremediation of metals.

Keywords

Bioremediation, Heavy Metals, Microorganisms, Metal–microbe Interactions, Resistance Mechanisms.
User
Notifications
Font Size