The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


There is a general consensus that nature-based biological measures can be used as a valuable tool to improve land quality. Microbial technology, e.g. use of mycorrhizal fungi, has been considered a beneficial option in the rehabilitation of disturbed and degraded lands. Mycorrhizal fungi are extremely important to improve soil aggregation and in turn the porosity, erodibility and even soil fertility. This article provides an insight into how mycorrhizal fungi might play a role in reclamation and revegetation of degraded lands with special focus on soil and water conservation. External hyphae of arbuscular mycorrhizal fungi (AMF) can bind the small soil particles into micro aggregates by producing a glycoprotein (glomalin) which alone can account for 30–60% of carbon in undisturbed soils. Glomalin is derived specifically from the hyphae of AMF and has not been reported in any other fungal species. Besides agriculture, the presence of AMF in the grassland and forest ecosystems is also of great significance as it helps in establishment of native plant species, soil improvement and carbon storage. The increasing interest of soil conservationists in this glycoprotein is also highlighted in this article.

Keywords

Arbuscular mycorrhizal fungi, carbon storage, degraded lands, glycoprotein, soil and water conservation.
User
Notifications
Font Size