The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


Biomass and carbon storage in orchard ecosystems serve as significant carbon sinks to reduce global warming. The objective of this study was to determine the best-fitted model for non-destructive prediction of dry biomass and carbon stock in Psidium guajava. Richard’s model was well validated and considered as best performing with lowest Akaike information criterion of 90.13, ischolar_main mean square error of 1.69 kg tree–1 and highest adjusted R2 of 0.981. Tree components like leaves, branches, bole, total above-ground biomass, total below ground biomass and ischolar_main biomass were fitted in Richard’s model for dry biomass and carbon stock prediction. The total dry biomass of P. guajava ranged from 0.54 to 9.26 Mg ha–1 in 2–10- years-old orchards. The highest mean dry biomass across tree components was observed in branches, while ischolar_mains recorded the lowest mean biomass. The total carbon stock was 0.27 and 4.19 Mg ha–1 with CO2 sequestration potential of 0.76 and 11.54 Mg ha–1 in 2-year and 10-year-old orchards respectively.

Keywords

Biomass production, carbon stock, global warming, growth models, Psidium guajava
User
Notifications
Font Size