Open Access Open Access  Restricted Access Subscription Access

Chalcogen and Pnictogen Bonds: Insights and Relevance


Affiliations
1 Crystallography and Crystal Chemistry Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462 066, India
 

Hydrogen bonding (HB) and halogen bonding (XB) interactions are now well established as important noncovalent forces across different research areas. Chalcogen bonding (ChB) and pnictogen bonding (PnB) interactions are increasingly gaining attention due to their potential applications and can be added to the arsenal of the already well-established HB and XB interactions. Given the tremendous progress made by the scientific community in the understanding of ChB and PnB interactions, we aim to provide an insight into the unique characteristics of these interactions through this perspective. We also aim to discuss some important applications of ChB and PnB interactions which will provide a better understanding of the relevance of these noncovalent interactions.

Keywords

Anion Recognition, Catalytic Activity, Chalcogen and Pnictogen Bonds, Crystal Engineering, Drug Design, Noncovalent Interaction.
User
Notifications
Font Size

  • Ikuta, S., Anisotropy of electron-density distribution around atoms in molecules: N, P, O and S atoms. J. Mol. Struct. (Theochem), 1990, 205, 191–201.
  • Politzer, P., Murray, J. S. and Clark, T., Halogen bonding and other σ -hole interactions: a perspective. Phys. Chem. Chem. Phys., 2013, 15, 11178–11189.
  • Murray, J. S., Lane, P., Clark, T., Riley, K. E. and Politzer, P., σ -Holes, π -holes and electrostatically-driven interactions. J. Mol. Model., 2012, 18, 541–548.
  • Bauzá, A., Mooibroek, T. J. and Frontera, A., The bright future of unconventional σ /π -hole interactions. ChemPhysChem, 2015, 16, 2496–2517.
  • Wang, H., Wang, W. and Jin, W. J., σ -Hole bond vs π-hole bond: a comparison based on halogen bond. Chem. Rev., 2016, 116, 5072–5104.
  • Murray, J. S. and Politzer, P., The electrostatic potential: an overview. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2011, 1, 153–163.
  • Kolář, M. H. and Hobza, P., Computer modeling of halogen bonds and other σ -hole interactions. Chem. Rev., 2016, 116, 5155–5187.
  • Remya, G. S. and Suresh, C. H., Assessment of the electron donor properties of substituted phenanthroline ligands in molybdenum carbonyl complexes using molecular electrostatic potentials. New J. Chem., 2018, 42, 3602–3608.
  • Bijina, P. V., Suresh, C. H. and Gadre, S. R., Electrostatics for probing lone pairs and their interactions. J. Comput. Chem., 2018, 39, 488–499.
  • Mohan, N. and Suresh, C. H., A molecular electrostatic potential analysis of hydrogen, halogen, and dihydrogen bonds. J. Phys. Chem. A, 2014, 118, 1697–1705.
  • Politzer, P., Lane, P., Concha, M. C., Ma, Y. and Murray, J. S., An overview of halogen bonding. J. Mol. Model., 2007, 13, 305–311.
  • Aakeröy, C. B., Spartz, C. L., Dembowski, S., Dwyre, S. and Desper, J., A systematic structural study of halogen bonding versus hydrogen bonding within competitive supramolecular systems. IUCrJ, 2015, 2, 498–510.
  • Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. and Terraneo, G., The halogen bond. Chem. Rev., 2016, 116, 2478–2601.
  • Costa, P. J., The halogen bond: nature and applications. Phys. Sci. Rev., 2017, 2, 20170136.
  • Wang, W., Ji, B. and Zhang, Y., Chalcogen bond: a sister noncovalent bond to halogen bond. J. Phys. Chem. A, 2009, 113, 8132–8135.
  • Zahn, S., Frank, R., Hey-Hawkins, E. and Kirchner, B., Pnicogen bonds: a new molecular linker? Chem. Eur. J., 2011, 17, 6034–6038.
  • Grabowski, S. J., Triel bonds, π -hole–π -electrons interactions in complexes of boron and aluminium trihalides and trihydrides with acetylene and ethylene. Molecules, 2015, 20, 11297–11316.
  • Mani, D. and Arunan, E., The X–C⋅⋅⋅Y (X = O/F, Y = O/S/F/ Cl/Br/N/P) ‘carbon bond’ and hydrophobic interactions. Phys. Chem. Chem. Phys., 2013, 15, 14377–14383.
  • Bauza, A. and Frontera, A., Aerogen bonding interaction: a new supramolecular force? Angew. Chem. Int. Ed., 2015, 54, 7340–7343.
  • Aakeröy, C. B. et al., Definition of the chalcogen bond (IUPAC recommendations 2019). Pure Appl. Chem., 2019, 91, 1889–1892.
  • Cavallo, G., Metrangolo, P., Pilati, T., Resnati, G. and Terraneo, G., Naming interactions from the electrophilic site. Cryst. Growth Des., 2014, 14, 2697–2702.
  • Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. and Pombeiro, A. J. L., Chalcogen bonding in synthesis, catalysis and design of materials. Dalton Trans., 2017, 46, 10121–10138.
  • Moaven, S. et al., Triple-pnictogen bonding as a tool for supramolecular assembly. Inorg. Chem., 2019, 58, 16227–16235.
  • Mahadevi, A. S. and Sastry, G. N., Cooperativity in noncovalent interactions. Chem. Rev., 2016, 116, 2775–2825.
  • Scheiner, S. and Lu, J., Halogen, chalcogen, and pnicogen bonding involving hypervalent atoms. Chem. Eur. J., 2018, 24, 8167–8177.
  • Zierkiewicz, W., Wysokiński, R., Michalczyk, M. and Scheiner, S., Chalcogen bonding of two ligands to hypervalent YF4 (Y = S, Se, Te, Po). Phys. Chem. Chem. Phys., 2019, 21, 20829–20839.
  • Fanfrlik, J. et al., Pnictogen bonding in pyrazine•PnX5 (Pn = P, As, Sb and X = F, Cl, Br) complexes. J. Mol. Model., 2017, 23, 328.
  • Frisch, M. J. et al., Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford, CT, USA, 2009.
  • Wang, C., Guan, L., Danovich, D., Shaik, S. and Mo, Y., The origins of the directionality of noncovalent intermolecular interactions. J. Comput. Chem., 2016, 37, 34–45.
  • Brezgunova, M. et al., Chalcogen bonding: experimental and theoretical determinations from electron density analysis. Geometrical preferences driven by electrophilic–nucleophilic interactions. Cryst. Growth Des., 2013, 13, 3283–3289.
  • Stone, A. J., Are halogen bonded structures electrostatically driven? J. Am. Chem. Soc., 2013, 135, 7005–7009.
  • Scheiner, S., Effects of substituents upon the P⋅⋅⋅N noncovalent interaction: the limits of its strength. J. Phys. Chem. A, 2011, 115, 11202–11209.
  • Adhikari, U. and Scheiner, S., Effects of charge and substituent on the S⋅⋅⋅N chalcogen bond. J. Phys. Chem. A, 2014, 118, 3183–3192.
  • Zhang, J., Li, W., Cheng, J., Liu, Z. and Li, Q., Cooperative effects between π -hole triel and π -hole chalcogen bonds. RSC Adv., 2018, 8, 26580–26588.
  • Wang, Y., Li, X., Zeng, Y., Meng, L. and Zhang, X., Theoretical insights into the π -hole interactions in the complexes containing triphosphorus hydride (P3H3) and its derivatives. Acta Crystallogr. Sect. B, 2017, 73, 195–202.
  • Scheiner, S., Can two trivalent N atoms engage in a direct N⋅⋅⋅N noncovalent interaction? Chem. Phys. Lett., 2011, 514, 32–35.
  • Sarkar, S., Pavan, M. S. and Row, T. N. G., Experimental validation of ‘pnicogen bonding’ in nitrogen by charge density analysis. Phys. Chem. Chem. Phys., 2015, 17, 2330–2334.
  • Shukla, R. and Chopra, D., Characterization of N⋅⋅⋅O non-covalent interactions involving σ -holes: ‘electrostatics’ or ‘dispersion’. Phys. Chem. Chem. Phys., 2016, 18, 29946–29954.
  • Varadwaj, P. R., Varadwaj, A., Marques, H. M. and MacDougall, P. J., The chalcogen bond: can it be formed by oxygen? Phys. Chem. Chem. Phys., 2019, 21, 19969–19986.
  • Ford, M. S., Saxton, M. and Ho, P. S., Sulfur as an acceptor to bromine in biomolecular halogen bonds. J. Phys. Chem. Lett., 2017, 8, 4246–4252.
  • Khavasi, H. M., Hosseini, M., Tehrani, A. A. and Naderi, S., Strengthening N⋅⋅⋅X halogen bonding via nitrogen substitution in the aromatic framework of halogen-substituted arylpyrazinamides. CrystEngComm, 2014, 16, 4546–4553.
  • Shukla, R. and Chopra, D., ‘Pnicogen bonds’ or ‘chalcogen bonds’ exploiting the effect of substitution on the formation of P⋅⋅⋅Se noncovalent bonds. Phys. Chem. Chem. Phys., 2016, 18, 13820–13829.
  • Thomas, S. P., Satheeshkumar, K., Mugesh, G. and Row, T. N. G., Unusually short chalcogen bonds involving organoselenium: insights into the Se–N bond cleavage mechanism of the antioxidant ebselen and analogues. Chem. Eur. J., 2015, 21, 6793–6800.
  • Scilabra, P., Terraneo, G. and Resnati, G., The chalcogen bond in crystalline solids: a world parallel to halogen bond. Acc. Chem. Res., 2019, 52, 1313–1324.
  • Brammer, L., Halogen bonding, chalcogen bonding, pnictogen bonding, tetrel bonding: origins, current status and discussion. Faraday Discuss, 2017, 203, 485–507.
  • Desiraju, G. R., Supramolecular synthons in crystal engineering –a new organic synthesis. Angew. Chem. Int. Ed., 1997, 34, 2311–2327.
  • Trubenstein, H. J., Moaven, S., Vega, M., Unruh, D. K. and Cozzolino, A. F., Pnictogen bonding with alkoxide cages: which pnictogen is best? New Chem. J., 2019, 43, 14305–14312.
  • Nayak, S. K. et al., Fluorination promotes chalcogen bonding in crystalline solids. CrystEngComm, 2017, 19, 4955–4959.
  • Scilabra, P., Terraneo, G. and Resnati, G., Fluorinated elements of Group 15 as pnictogen bond donor sites. J. Fluor. Chem., 2017, 203, 62–74.
  • Xu, Y., Kumar, V., Bradshaw, M. J. Z. and Bryce, D. L., Chalcogenbonded cocrystals of substituted pyridine N-oxides and chalcogenodiazoles: an X-ray diffraction and solid–state NMR investigation. Cryst. Growth Des., 2020, 20, 7910–7920.
  • Scilabra, P. et al., 4,4′-Dipyridyl dioxide·SbF3 cocrystal: pnictogen bond prevails over halogen and hydrogen bonds in driving self-assembly. Cryst. Growth Des., 2020, 20, 916–922.
  • Groom, C. R., Bruno, I. J., Lightfoot, M. P. and Ward, S. C., Acta Crystallogr. Sect. B, 2016, 72, 171–179.
  • Taylor, M. S., Anion recognition based on halogen, chalcogen, pnictogen and tetrel bonding. Coord. Chem. Rev., 2020, 413, 213270.
  • Benz, S., Poblador-Bahamonde, A. I., Low-Ders, N. and Matile, S., Catalysis with pnictogen, chalcogen, and halogen bonds. Angew. Chem. Int. Ed., 2018, 57, 5408–5412.
  • Jentzsch, A. V., Emery, D., Mareda, J., Metrangolo, P., Resnati, G. and Matile, S., Ditopic ion transport systems: anion–π interactions and halogen bonds at work. Angew. Chem. Int. Ed., 2011, 50, 11675–11678.
  • Lee, L. M., Tsemperouli, M., Poblador-Bahamonde, A. I., Benz, S., Sakai, N., Sugihara, K. and Matile, S., Anion transport with pnictogen bonds in direct comparison with chalcogen and halogen bonds. J. Am. Chem. Soc., 2019, 141, 810–814.
  • Benz, S., Mareda, J., Besnard, C., Sakai, N. and Matile, S., Catalysis with chalcogen bonds: neutral benzodiselenazole scaffolds with high-precision selenium donors of variable strength. Chem. Sci., 2017, 8, 8164–8169.
  • Gini, A. et al., Pnictogen-bonding catalysis: brevetoxin-type polyether cyclizations. Chem. Sci., 2020, 11, 7086–7091.
  • Lu, L. L. Y., Zhu, Z. and Liu, H., Pnictogen, chalcogen, and halogen bonds in catalytic systems: theoretical study and detailed comparison. J. Mol. Model., 2020, 26, 16.
  • Iwaoka, M., Chalcogen bonds in protein architecture. In Noncovalent Interactions (ed. Scheiner, S.), Springer International Publishing, Switzerland, 2015, Ch. 9, 1st edn, pp. 265–289.
  • Kristian Kříž, K., Fanfrlík, J. and Lepšík, M., Chalcogen bonding in protein–ligand complexes: PDB survey and quantum mechanical calculations. ChemPhysChem, 2018, 19, 2540–2548.

Abstract Views: 288

PDF Views: 106




  • Chalcogen and Pnictogen Bonds: Insights and Relevance

Abstract Views: 288  |  PDF Views: 106

Authors

Rahul Shukla
Crystallography and Crystal Chemistry Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462 066, India
Deepak Chopra
Crystallography and Crystal Chemistry Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462 066, India

Abstract


Hydrogen bonding (HB) and halogen bonding (XB) interactions are now well established as important noncovalent forces across different research areas. Chalcogen bonding (ChB) and pnictogen bonding (PnB) interactions are increasingly gaining attention due to their potential applications and can be added to the arsenal of the already well-established HB and XB interactions. Given the tremendous progress made by the scientific community in the understanding of ChB and PnB interactions, we aim to provide an insight into the unique characteristics of these interactions through this perspective. We also aim to discuss some important applications of ChB and PnB interactions which will provide a better understanding of the relevance of these noncovalent interactions.

Keywords


Anion Recognition, Catalytic Activity, Chalcogen and Pnictogen Bonds, Crystal Engineering, Drug Design, Noncovalent Interaction.

References





DOI: https://doi.org/10.18520/cs%2Fv120%2Fi12%2F1848-1853