Open Access Open Access  Restricted Access Subscription Access

Unambiguous detection of OH and H2O on the Moon from Chandrayaan-2 Imaging Infrared Spectrometer reflectance data using 3 μm hydration feature


Affiliations
1 Indian Institute of Remote Sensing, Indian Space Research Organization, Dehradun 248 001, India
2 Space Applications Centre, Indian Space Research Organisation (ISRO), Ahmedabad 380 015, India
3 Space Applications Centre, Indian Space Research Organisation (ISRO), Ahmedabad 380 015, India, India
4 U.R. Rao Satellite Centre, ISRO, Bengaluru 560 017, India, India
5 Indian Space Research Organisation Head Quarters, Bengaluru 560 094, India, India
 

Imaging Infrared Spectrometer (IIRS) on-board Chandrayaan-2 is designed to measure lunar reflected and emitted solar radiation in 0.8–5.0 μmm spectral range. Its high spatial resolution (~80 m) and extended spectral range is most suitable to completely characterize lunar hydration (2.8–3.5 μmm region) attributed to the presence of OH and/or H2O. Here we present initial results from IIRS reflectance data analysed to unambiguously detect and quantify lunar 3 μmm absorption feature. After pre-processing and data-reduction, a physics based thermal correction analysis of IIRS reflectance spectra has been done using co-located temperature measurements. Hydration absorption was observed at all latitudes and surface types with varying degrees for all pixels in the study area and its absorption depth shows distinct variability associated with mineralogy, surface temperature and latitude.

Keywords

Imaging Infrared Spectrometer, Lunar Hydration, Moon, Reflectance Data, Thermal Correction.
User
Notifications
Font Size

  • Papike, J. J., Taylor, L. and Simon, S., Lunar minerals. In The Lunar Source Book (eds Heiken, G. H. et al.), Cambridge University Press, Cambridge, UK, 1991, pp. 121–182.
  • Lucey, P. G. et al., Understanding the lunar surface and space– Moon interactions. Rev. Min. Geochem., 2006, 60, 83–219.
  • Lucey, P. G., The poles of the Moon. Elements, 2009, 5, 41–46.
  • Pieters, C. M. et al., Character and spatial distribution of OH/H2O on the surface of the Moon seen by M3 on Chandrayaan-1. Science, 2009, 326, 568–572.
  • Bhattacharaya, S. et al., Endogenic water on the moon associated with the non-mare silicic volcanism: implications for hydrated lunar interior. Curr. Sci., 2013, 105, 685–691.
  • Klima, R. et al., Remote detection of magmatic water in Bullialdus crater on the Moon. Nature Geosci., 2013; http://dx.doi.org/ 10.1038/NGEO1909.
  • Chauhan, P. et al., Detection of OH/H2O on the central peak of Jackson crater from Moon Mineralogical Mapper (M3) data onboard Chandrayaan-1. In Lunar and Planetary Science Conference, The Woodlands, Texas, USA, abstr. 2072, 2014, vol. 45.
  • Bhattacharya, S. et al., Detection of hydroxyl-bearing exposures of possible magmatic origin on the central peak of crater Theophilus using Chandrayaan-1 Moon Mineralogy Mapper (M3) data. Icarus, 2015, 260, 167–173.
  • Clark, R. N., Detection of adsorbed water and hydroxyl on the Moon. Science, 2009, 326, 562–564; doi:10.1126/science.1178105.
  • Sunshine, J. M. et al., Temporal and spatial variability of lunar hydration as observed by the deep impact spacecraft. Science, 2009, 326, 565–568; doi:10.1126/science.1179788.
  • Honniball, C. I. et al., Molecular water detected on the sunlit Moon by SOFIA. Nature Astron., 2020, 5, 121–127; https:// doi.org/10.1038/s41550-020-01222-x.
  • McCord, T. B. et al., Sources and physical processes responsible for the OH/H2O in the lunar soil as revealed by the Moon Mineralogy Mapper (M3). J. Geophys. Res., 2011, 116, E00G05.
  • Clark, R. N. et al., Thermal removal from near-infrared imaging spectroscopy data of the Moon, J. Geophys. Res., 2011, 116, E00G16; doi:10.1029/2010JE003751.
  • Li, S. and Milliken, R. E., An empirical thermal correction model for Moon Mineralogy Mapper data constrained by laboratory spectra and diviner temperatures. J. Geophys. Res. Planets, 2016, 121, 2081–2107.
  • Chowdhury A. R. et al., Imaging infrared spectrometer onboard Chandrayaan-2 orbiter. Curr. Sci., 2020, 118(3), 368–375.
  • Clark, R. N., Planetary reflectance measurements in the region of planetary thermal emission. Icarus, 1979, 40, 94–103; doi: 10.1016/0019-1035(79)90056-3.
  • McCord, T. B. et al., Moon: near-infrared spectral reflectance, a first good look. J. Geophys. Res., 1981, 86, 10883–10892.
  • Colaprete, A. et al., Water and more: an overview of LCROSS impact results. Lunar Planet. Sci. Conf., abstr. Woodlands, Texas, 2335, 2010, vol. 41.
  • Milliken, R. E. and Mustard, J. F., Quantifying absolute water content of minerals using near‐infrared reflectance spectroscopy. J. Geophys. Res., 2005, 110, E12001.
  • Li, S. and Milliken, R. E., Water on the surface of the Moon as seen by the Moon Mineralogy Mapper: distribution, abundance, and origins. Sci. Adv., 2017, 3(9), e1701471.
  • Hapke, B., Theory of Reflectance and Emittance Spectroscopy, Cambridge University Press, New York, USA, 2012, 2nd edn, p. 513.
  • Honniball, C. I. et al., Telescopic observations of lunar hydration: variations and abundance. J. Geophys. Res., 2020, 125, e2020JE006484l; https://doi.org/10.1029/2020JE006484.
  • Hibbitts, C. A. et al., Thermal stability of water and hydroxyl on the surface of the Moon from temperature-programmed desorption measurements of lunar analog materials. Icarus, 2011, 213, 64–72.
  • Dyar, M. D., Hibbitts, C. A. and Orlando, T. M., Mechanisms for incorporation of hydrogen in and on terrestrial planetary surfaces. Icarus, 2010, 208, 425–437.
  • Keays, R. K. et al., Trace elements and radioactivity in lunar rocks: implications for meteorite in fall, solar‐wind flux, and formation conditions of Moon. Science, 1970, 167, 490–493, doi:10.1126/science.167.3918.490.
  • Greenwood, J. P. et al., Hydrogen isotope ratios in lunar rocks indicate delivery of cometary water to the Moon. Nature Geosci., 2011, 4, 79–82.
  • Saal, A. E., Hauri E. H., Van Orman J. A. and Rutherford, M. J., Hydrogen isotopes in lunar volcanic glasses and melt inclusions reveal a carbonaceous chondrite heritage. Science, 2013, 340, 1317–1320.
  • Saal, A. E. et al., Volatile content of lunar volcanic glasses and the presence of water in the Moon’s interior. Nature, 2008, 454, 192–195.
  • Robinson, K. L. and Taylor, G. J., Heterogeneous distribution of water in the Moon. Nature Geosci., 2014, 7, 401–408; doi: 10.1038/NGEO2173.
  • McCubbin, F. M. et al., Nominally hydrous magmatism on the Moon. Proc. Natl. Acad. Sci. USA, 2010, 107, 11223–11228.
  • Hapke, B., Effects of simulated solar wind on the photometric properties of rock powders. Ann. NY Acad. Sci., 1965, 123, 711– 721.
  • Starukhina, L., Water detection on atmosphere less celestial bodies: alternative explanations of the observations. J. Geophys. Res., 2006, 106, 14701–14710.
  • Smith, A. G., Radio Exploration of the Sun. D. Van Nostrand, Princeton, NJ, USA, 1967, p. 142.
  • Managadze, G. G. et al., Simulating OH/H2O formation by solar wind at the lunar surface. Icarus, 2011, 215, 449–451.
  • Zeller, E. J., Ronca, L. B. and Levy, P. W., Proton-induced hydroxyl formation on the lunar surface. J. Geophys. Res., 1966, 71, 4855–4860.
  • Thiel, P. A. and Madey, T. E., The interaction of water with solid surfaces-fundamental-aspects. Surf. Sci. Rep., 1987, 7(6–8), 211– 385.
  • Starukhina, L., Water detection on atmosphereless celestial bodies: alternative explanations of the observations, J. Geophys. Res., 2001, 106, 14701–14710; doi:10.1029/2000JE001307.
  • Farrell, W. M., Hurley, D. M. and Zimmerman, M. I., Solar wind implantation into lunar regolith: hydrogen retention in a surface with defects. Icarus, 2015, 255, 116–126.
  • Hui, H., Peslier, A. H., Zhang, Y. and Neal, C. R., Water in lunar anorthosites and evidence for a wet early Moon. Nature Geosci., 2013, 6, 177–180; doi10.1038/ngeo1735.
  • Jones, B. M., Aleksandrov, A., Hibbitts, K., Dyar, M. D. and Orlando, T. M., Solar wind-induced water cycle on the Moon. Geophys. Res. Lett., 2018, 45, 10959–10967; https://doi.org/ 10.1029/2018GL080008.
  • Hendrix, A. R. et al., Diurnally migrating lunar water: evidence from ultraviolet data. Geophys. Res. Lett., 2019, 46, 2417–2424; https://doi.org/10.1029/2018GL081821.
  • Poston, M. J. G. et al., Temperature programmed desorption studies of water interactions with Apollo lunar samples 12001 and 72501. Icarus, 2015, 255, 24–29; https://doi.org/10.1016/ j.icarus.2014.09.049.
  • Feldman, W. C. et al., Fluxes of fast and epithermal neutrons from lunar prospector: evidence for water ice at the lunar poles. Science, 1998, 281, 1496–1500.

Abstract Views: 262

PDF Views: 104




  • Unambiguous detection of OH and H2O on the Moon from Chandrayaan-2 Imaging Infrared Spectrometer reflectance data using 3 μm hydration feature

Abstract Views: 262  |  PDF Views: 104

Authors

Prakash Chauhan
Indian Institute of Remote Sensing, Indian Space Research Organization, Dehradun 248 001, India
Mamta Chauhan
Indian Institute of Remote Sensing, Indian Space Research Organization, Dehradun 248 001, India
Prabhakar A. Verma
Indian Institute of Remote Sensing, Indian Space Research Organization, Dehradun 248 001, India
Supriya Sharma
Indian Institute of Remote Sensing, Indian Space Research Organization, Dehradun 248 001, India
Satadru Bhattacharya
Space Applications Centre, Indian Space Research Organisation (ISRO), Ahmedabad 380 015, India
Aditya Kumar Dagar
Space Applications Centre, Indian Space Research Organisation (ISRO), Ahmedabad 380 015, India, India
Amitabh
Space Applications Centre, Indian Space Research Organisation (ISRO), Ahmedabad 380 015, India, India
Abhishek N. Patil
Space Applications Centre, Indian Space Research Organisation (ISRO), Ahmedabad 380 015, India, India
Ajay Kumar Parashar
Space Applications Centre, Indian Space Research Organisation (ISRO), Ahmedabad 380 015, India, India
Ankush Kumar
Space Applications Centre, Indian Space Research Organisation (ISRO), Ahmedabad 380 015, India, India
Nilesh Desai
Space Applications Centre, Indian Space Research Organisation (ISRO), Ahmedabad 380 015, India, India
Ritu Karidhal
U.R. Rao Satellite Centre, ISRO, Bengaluru 560 017, India, India
A. S. Kiran Kumar
Indian Space Research Organisation Head Quarters, Bengaluru 560 094, India, India

Abstract


Imaging Infrared Spectrometer (IIRS) on-board Chandrayaan-2 is designed to measure lunar reflected and emitted solar radiation in 0.8–5.0 μmm spectral range. Its high spatial resolution (~80 m) and extended spectral range is most suitable to completely characterize lunar hydration (2.8–3.5 μmm region) attributed to the presence of OH and/or H2O. Here we present initial results from IIRS reflectance data analysed to unambiguously detect and quantify lunar 3 μmm absorption feature. After pre-processing and data-reduction, a physics based thermal correction analysis of IIRS reflectance spectra has been done using co-located temperature measurements. Hydration absorption was observed at all latitudes and surface types with varying degrees for all pixels in the study area and its absorption depth shows distinct variability associated with mineralogy, surface temperature and latitude.

Keywords


Imaging Infrared Spectrometer, Lunar Hydration, Moon, Reflectance Data, Thermal Correction.

References





DOI: https://doi.org/10.18520/cs%2Fv121%2Fi3%2F391-401