Open Access Open Access  Restricted Access Subscription Access

Internal versus external quantum efficiency of luminescent materials, photovoltaic cells, photodetectors and photoelectrocatalysis


Affiliations
1 Materials Research Centre, Indian Institute of Science, Bengaluru 560 012, India
2 Materials Research Centre, Indian Institute of Science, Bengaluru 560 012, India
3 Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
 

Internal and external quantum yield/efficiency is of paramount importance for luminescent materials, photovoltaic cells, photodetectors and photoelectrocatalysis. We aim to provide a relation between internal and external quantum yield/efficiency and correlation among the material/device properties. We also aim to understand this relation through a common example we experience in our lives

Keywords

Internal and external quantum efficiency, luminescent materials, photovoltaic cells, photodetectors, photo¬electrocatalysis.
User
Notifications
Font Size

  • Neufeld, C. J., Toledo, N. G., Cruz, S. C., Iza, M., DenBaars, S. P. and Mishra, U. K., High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap. Appl. Phys. Lett., 2008, 93, 10–13.
  • Mukhokosi, E. P., Roul, B., Krupanidhi, S. B. and Nanda, K. K., Toward a fast and highly responsive SnSe2-based photodiode by exploiting the mobility of the counter semiconductor. ACS Appl. Mater. Interf., 2019, 11(6), 6184–6194.
  • Wu, J. M., Chen, Y. and Pan, L., Multi-layer monoclinic BiVO4 with oxygen vacancies and V4+ species for highly efficient visiblelight photoelectrochemical applications. Appl. Catal. B Environ., 2018, 221, 187–195.
  • Gorrotxategi, P., Consonni, M. and Gasse, A., Optical efficiency haracterization of LED phosphors using a double integrating sphere system. J. Solid State Light, 2015, 2, 1–14.
  • Wang, C. Y., Takeda, T. and Ten Kate, O. M., Ce-Doped La3Si6.5Al1.5N9.5O5.5, a rare highly efficient blue-emitting phosphor at short wavelength toward high color rendering white LED application. ACS Appl. Mater. Interf., 2017, 9, 22665–22675.
  • Bünzli, J. C. G. and Chauvin, A. S., Lanthanides in solar energy conversion. Handb. Phys. Chem. Rare Earths, 2014, 261, 169– 281.
  • https://en.wikipedia.org/wiki/Quantum efficiency (accessed on 2 March 2021).
  • Ferrero, A., Campos, J., Pons, A. and Corrons, A., New model for the internal quantum efficiency of photodiodes based on photocurrent analysis. Appl. Opt., 2005, 44, 208–216.
  • Garin, M. et al., Black-silicon ultraviolet photodiodes achieve external quantum efficiency above 130%. Phys. Rev. Lett., 2020, 125, 117702.
  • Gim, S., Bisquert, J., Principles, F. B. and Devices, A., Photoelectrochemical solar fuel production. Photoelectrochem. Sol. Fuel Prod., 2016, 189–194.
  • Sariket, D., Shyamal, S., Hajra, P., Mandal, H., Bera, A., Maity, A. and Bhattacharya, C., Improvement of photocatalytic activity of surfactant modified In2O3 towards environmental remediation. New J. Chem., 2018, 42, 2467–2475.
  • Li, J. et al., A three-dimensional hexagonal fluorine-doped tin oxide nanocone array: a superior light harvesting electrode for high performance photoelectrochemical water splitting. Energy Environ. Sci., 2014, 7, 3651–3658.
  • Mandal, H., Shyamal, S., Hajra, P., Bera, A., Sariket, D., Kundu, S. and Bhattacharya, C., Development of ternary iron vanadium oxide semiconductors for applications in photoelectrochemical water oxidation. RSC Adv., 2016, 6, 4992–4999.
  • Hu, J., Zhao, S., Zhao, X. and Chen, Z., Strategies of anode materials design towards improved photoelectrochemical water splitting efficiency. Coatings, 2019, 9, 309.
  • Raut, H. K., Ganesh, V. A., Nair, A. S. and Ramakrishna, S., Antireflective coatings: a critical, in-depth review. Energy Environ. Sci., 2011, 4, 3779–3804.
  • Hussain, B., Ebong, A. and Ferguson, I., Zinc oxide as an active n-layer and antireflection coating for silicon based heterojunction solar cell. Sol. Energy Mater. Sol. Cells, 2015, 139, 95–100.
  • Yan, X., Poxson, D. J., Cho, J., Welser, R. E., Sood, A. K., Kim, J. K. and Schubert, E. F., Enhanced omnidirectional photovoltaic performance of solar cells using multiple-discrete-layer tailoredand low-refractive index anti-reflection coatings. Adv. Funct. Mater., 2013, 23, 583–590.
  • Kim, J. H., Jang, J. W., Jo, Y. H., Abdi, F. F., Lee, Y. H., Van De rol, R. and Lee, J. S., Hetero-type dual photoanodes for unbiased solar water splitting with extended light harvesting. Nature Commun., 2016, 7, 1–9.
  • O’Brien, P. G., Kherani, N. P., Chutinan, A., Ozin, G. A., John, S. and Zukotynski, S., Silicon photovoltaics using conducting photonic crystal back-reflectors. Adv. Mater., 2008, 20, 1577–1582.
  • Zeng, L. et al., Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector. Appl. Phys. Lett., 2008, 93, 1–4.
  • Hossain, M. I., Qarony, W., Hossain, M. K., Debnath, M. K., Uddin, M. J. and Tsang, Y. H., Effect of back reflectors on photon absorption in thin-film amorphous silicon solar cells. Appl. Nanosci., 2017, 7, 489–497.
  • Khan, R., Wang, X. and Alam, M. A., Fundamentals of PV efficiency: limits for light absorption., 2012, arXiv:1212.2897 [physics.gen-ph].
  • Salman, K. A., Omar, K. and Hassan, Z., Effective conversion efficiency enhancement of solar cell using ZnO/PS antireflection coating layers. Sol. Energy, 2012, 86, 541–547.

Abstract Views: 297

PDF Views: 120




  • Internal versus external quantum efficiency of luminescent materials, photovoltaic cells, photodetectors and photoelectrocatalysis

Abstract Views: 297  |  PDF Views: 120

Authors

Hemam Rachna Devi
Materials Research Centre, Indian Institute of Science, Bengaluru 560 012, India
Omeshwari Yadorao Bisen
Materials Research Centre, Indian Institute of Science, Bengaluru 560 012, India
Sankalpa Nanda
Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
Ravi Nandan
Materials Research Centre, Indian Institute of Science, Bengaluru 560 012, India
Karuna Kar Nanda
Materials Research Centre, Indian Institute of Science, Bengaluru 560 012, India

Abstract


Internal and external quantum yield/efficiency is of paramount importance for luminescent materials, photovoltaic cells, photodetectors and photoelectrocatalysis. We aim to provide a relation between internal and external quantum yield/efficiency and correlation among the material/device properties. We also aim to understand this relation through a common example we experience in our lives

Keywords


Internal and external quantum efficiency, luminescent materials, photovoltaic cells, photodetectors, photo¬electrocatalysis.

References





DOI: https://doi.org/10.18520/cs%2Fv121%2Fi7%2F894-898