Open Access
Subscription Access
Internal versus external quantum efficiency of luminescent materials, photovoltaic cells, photodetectors and photoelectrocatalysis
Internal and external quantum yield/efficiency is of paramount importance for luminescent materials, photovoltaic cells, photodetectors and photoelectrocatalysis. We aim to provide a relation between internal and external quantum yield/efficiency and correlation among the material/device properties. We also aim to understand this relation through a common example we experience in our lives
Keywords
Internal and external quantum efficiency, luminescent materials, photovoltaic cells, photodetectors, photo¬electrocatalysis.
User
Font Size
Information
- Neufeld, C. J., Toledo, N. G., Cruz, S. C., Iza, M., DenBaars, S. P. and Mishra, U. K., High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap. Appl. Phys. Lett., 2008, 93, 10–13.
- Mukhokosi, E. P., Roul, B., Krupanidhi, S. B. and Nanda, K. K., Toward a fast and highly responsive SnSe2-based photodiode by exploiting the mobility of the counter semiconductor. ACS Appl. Mater. Interf., 2019, 11(6), 6184–6194.
- Wu, J. M., Chen, Y. and Pan, L., Multi-layer monoclinic BiVO4 with oxygen vacancies and V4+ species for highly efficient visiblelight photoelectrochemical applications. Appl. Catal. B Environ., 2018, 221, 187–195.
- Gorrotxategi, P., Consonni, M. and Gasse, A., Optical efficiency haracterization of LED phosphors using a double integrating sphere system. J. Solid State Light, 2015, 2, 1–14.
- Wang, C. Y., Takeda, T. and Ten Kate, O. M., Ce-Doped La3Si6.5Al1.5N9.5O5.5, a rare highly efficient blue-emitting phosphor at short wavelength toward high color rendering white LED application. ACS Appl. Mater. Interf., 2017, 9, 22665–22675.
- Bünzli, J. C. G. and Chauvin, A. S., Lanthanides in solar energy conversion. Handb. Phys. Chem. Rare Earths, 2014, 261, 169– 281.
- https://en.wikipedia.org/wiki/Quantum efficiency (accessed on 2 March 2021).
- Ferrero, A., Campos, J., Pons, A. and Corrons, A., New model for the internal quantum efficiency of photodiodes based on photocurrent analysis. Appl. Opt., 2005, 44, 208–216.
- Garin, M. et al., Black-silicon ultraviolet photodiodes achieve external quantum efficiency above 130%. Phys. Rev. Lett., 2020, 125, 117702.
- Gim, S., Bisquert, J., Principles, F. B. and Devices, A., Photoelectrochemical solar fuel production. Photoelectrochem. Sol. Fuel Prod., 2016, 189–194.
- Sariket, D., Shyamal, S., Hajra, P., Mandal, H., Bera, A., Maity, A. and Bhattacharya, C., Improvement of photocatalytic activity of surfactant modified In2O3 towards environmental remediation. New J. Chem., 2018, 42, 2467–2475.
- Li, J. et al., A three-dimensional hexagonal fluorine-doped tin oxide nanocone array: a superior light harvesting electrode for high performance photoelectrochemical water splitting. Energy Environ. Sci., 2014, 7, 3651–3658.
- Mandal, H., Shyamal, S., Hajra, P., Bera, A., Sariket, D., Kundu, S. and Bhattacharya, C., Development of ternary iron vanadium oxide semiconductors for applications in photoelectrochemical water oxidation. RSC Adv., 2016, 6, 4992–4999.
- Hu, J., Zhao, S., Zhao, X. and Chen, Z., Strategies of anode materials design towards improved photoelectrochemical water splitting efficiency. Coatings, 2019, 9, 309.
- Raut, H. K., Ganesh, V. A., Nair, A. S. and Ramakrishna, S., Antireflective coatings: a critical, in-depth review. Energy Environ. Sci., 2011, 4, 3779–3804.
- Hussain, B., Ebong, A. and Ferguson, I., Zinc oxide as an active n-layer and antireflection coating for silicon based heterojunction solar cell. Sol. Energy Mater. Sol. Cells, 2015, 139, 95–100.
- Yan, X., Poxson, D. J., Cho, J., Welser, R. E., Sood, A. K., Kim, J. K. and Schubert, E. F., Enhanced omnidirectional photovoltaic performance of solar cells using multiple-discrete-layer tailoredand low-refractive index anti-reflection coatings. Adv. Funct. Mater., 2013, 23, 583–590.
- Kim, J. H., Jang, J. W., Jo, Y. H., Abdi, F. F., Lee, Y. H., Van De rol, R. and Lee, J. S., Hetero-type dual photoanodes for unbiased solar water splitting with extended light harvesting. Nature Commun., 2016, 7, 1–9.
- O’Brien, P. G., Kherani, N. P., Chutinan, A., Ozin, G. A., John, S. and Zukotynski, S., Silicon photovoltaics using conducting photonic crystal back-reflectors. Adv. Mater., 2008, 20, 1577–1582.
- Zeng, L. et al., Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector. Appl. Phys. Lett., 2008, 93, 1–4.
- Hossain, M. I., Qarony, W., Hossain, M. K., Debnath, M. K., Uddin, M. J. and Tsang, Y. H., Effect of back reflectors on photon absorption in thin-film amorphous silicon solar cells. Appl. Nanosci., 2017, 7, 489–497.
- Khan, R., Wang, X. and Alam, M. A., Fundamentals of PV efficiency: limits for light absorption., 2012, arXiv:1212.2897 [physics.gen-ph].
- Salman, K. A., Omar, K. and Hassan, Z., Effective conversion efficiency enhancement of solar cell using ZnO/PS antireflection coating layers. Sol. Energy, 2012, 86, 541–547.
Abstract Views: 298
PDF Views: 120