Open Access
Subscription Access
High heat production of granites from Southern Khetri Belt, Rajasthan, India
The Mesoproterozoic A-type granites from Chapoli–Chowkri area, South Khetri Belt (SKB) of Aravalli craton are characterized by high content of thorium and uranium with variable Th/U ratio. Average radiogenic heat production of Udaipurwati granite, Chapoli granite and albitite are 6.67 mWm–3, 6.90 mWm–3 and 6.92 mWm–3 respectively, which are much higher than the average RHP values for continental crust and the granites of North Khetri Belt (NKB). Average contribution of RHP due to thorium (56.86%) is higher than uranium (40.84%) and potassium (2.28%). Based on the heat production and their geochemical behaviour, these granites from South Khetri Belt are classified as moderate to high heat producing granites. Study on heat flow suggested that the high levels of radiogenic heat production in the uppermost crust could be the reason for high heat flow in the area
Keywords
Albitites, Chapoli–Chowkri area, Chapoli granite, RHP, Southern Khetri Belt, Udaipurwati granite
User
Font Size
Information
- Birch, F., Roy, R. F. and Decker, Heat flow and thermal history in New York and New England. In Studies of Appalachian Geology (eds Zen, E. et al.), Northern and Maritime, Interscience, New York, 1968, pp. 437–451.
- Chapman, D. S., Thermal gradients in the continental crust. Geol. Soc. Spec. Publ., 1986, 24, 63–70.
- Vila, M., Fernandez, M. and Jimenez-Munt, I., Radiogenic heat production variability of some common lithological groups and its significance to lithospheric thermal modeling. Tectonophysics, 2010, 490, 152–164.
- Mareschal, J.-C. and Jaupart, C., Radiogenic heat production, thermal regime and evolution of continental crust. Tectonophysics, 2013, 609, 524–534.
- Artemieva, I. M., Thybo, H., Jakobsen, K., Sorensen, N. K. and Nielsen, L. S. K., Heat production in granitic rocks: global analysis based on a new data compilation GRANITE2017. Earth-Sci. Rev., 2017, 172, 1–26.
- Rao, R. U. M., Rao, G. V. and Narain, H., Radioactive heat generation and heat flow in the Indian shield, Earth Planet. Sci. Lett., 1976, 30, 57–64.
- Roy, S. and Rao, R. U. M., Heat flow in the Indian shield. J. Geophys. Res., 2000, 105(25), 587–604.
- Ray, L., Senthil Kumar, P., Reddy, G. K., Roy, S., Rao, G. V., Srinivasan, R. and Rao, R. U. M., High mantle heat flow in a Precambrian granulite province: evidence from southern India. J. Geophys. Res., 2003, 108(B2), 2084.
- Kochhar, N., High heat producing granites of the Malani Igneous Suite, northern peninsular India. Indian Min., 1989, 43(3–4), 339– 346.
- Sharma, R., High heat production (HHP) granites of Jhunjhunu area, Rajasthan, India. Bull. Ind. Geol. Assoc., 1994, 27, 55–61.
- Srivastava, P. K., High heat producing granites of Degana, Rajasthan. Indian J. Geochem., 2003, 18, 149–155.
- Qazi, M. A. and Sukhchain, Radionuclide heat production of rare metal bearing Dhanota granites. Indian J. Geochem., 2006, 21(2), 442–452.
- Singh, A. K. and Vallinayagam, G., Radioactive element distribution and rare–metal mineralization in anorogenic acid volcanoplutonic rocks of the Neoproterozoic Malani Felsic Province, Western Peninsular India. J. Geol. Soc. India, 2009, 73, 837–853.
- Singh, L. S. and Vallinayagam, G., High heat producing volcanoplutonic rocks of the Siner Area, Malani Igneous Suite, Western Rajasthan, India. Int. J. Geol., 2012, 3, 1137–1141.
- Shrivastava, K. L., Deva Ram and Gaur, V., High heat producing radioactive granites of Malani Igneous Suite at Northeast of Jodhpur, Northwestern India. J. Geol. Soc. India, 2017, 89, 291–294.
- Sharma, R., Kumar, N. and Kumar, N., Signatures of high heat production and mineralization associated with plutonic and volcanic acidic rocks from Tosham Ring Complex, Southwestern Haryana. India Himal. Geol., 2019, 40(2), 239–247.
- Kaur, P., Chaudhri, N., Hofmann, H. W., Raczek, I., Okrusch, M., Skora, S. and Koepke, J., Metasomatism of ferroan granites in the northern Aravalli orogen, NW India: geochemical and isotopic constraints, and its metallogenic significance. Int. J. Earth Sci., 2014, 103(4), 1083–1112.
- Kaur, P., Chaudhri, N. and Hofmann, H. W., New evidence for two sharp replacement fronts during albitization of granitoids from northern Aravalli orogen, northwest India. Int. Geol. Rev., 2015, 57(11–12), 1660–1685.
- Nagaraju, P., Ray, L., Singh S. P. and Roy, S., Heat flow, heat production, and crustal temperatures in the Archaean Bundelkhand craton, north–central India: implications for thermal regime beneath the Indian shield. J. Geophys. Res. Solid Earth, 2017, 122, 5766–5788.
- Pandey, O. P., Geodynamic Evolution of the Indian Shield: Geophysical aspects. Society of Earth Scientists Series, Springer Nature, Switzerland, AG, 2020.
- Heron, A. M., The geology of central Rajputana. Mem. Geol. Surv. India, 1953, 79, 389.
- Roy, A. B. and Jakhar, S. R., In Geology of Rajasthan (Northwest India) Precambrian to Recent, Scientific Publishers (India), Jodhpur, 2002, p. 421.
- Sivaraman, T. V. and Raval, U., U–Pb isotopic study of zircons from a few granitoids of Delhi-Aravalli Belt. J. Geol. Soc. India, 1995, 46, 461–475.
- Biju-Sekhar, S., Yokoyama, K., Pandit, M. K., Okudaira, T., Yoshida, M. and Santosh, M., Late Paleoproterozoic magmatism in Delhi Fold Belt, NW India and its implication, evidence from EPMA chemical ages of zircons. J. Asian Earth Sci., 2003, 22, 189–207.
- Gupta, P. and Guha, D. B., Stratigraphy, structure and basementcover relationship in south Khetri Belt, Rajasthan. Indian J. Geol., 1998, 70, 91–106.
- Saini, N. K., Mukherjee, P. K., Rathi, M. S., Khanna, P. P. and Purohit, K. K., A new geochemical reference sample of granite (DG-H) from Dalhousie, Himachal. Him. Geol. Soc. India, 1998, 52(5), 603–606.
- Whalen, J. B., Currie, K. L. and Chappell, B. W., A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol., 1987, 95(4), 407–419.
- Rogers, J. J. W. and Adams, J. A. S., Uranium and thorium. In Handbook of Geochemistry (ed. Wedepohl, K. H.), Springer Verlag, Berlin, 1969, vol. 113, pp. 11–14.
- Ashwal, L. D., Morgan, P., Kelley, S. A. and Percival, J. A., Heat production in an Archaean profile and implications for heat flow and mobilization of heat-producing elements. Earth Planet. Sci. Lett., 1987, 85, 439–450.
- Van Schmus, W. R., Natural radioactivity of the crust and mantle.In Global Earth Physics, A Handbook of Physical Constants, AGU Reference Shelf 1, 1995.
- Hasterok, D. and Webb, J., On the radiogenic heat production of metamorphic, igneous, and sedimentary rocks. Geosci. Front., 2018, 9(6), 1777–1794.
- Morgan, P. and Sass, J. H., Thermal regime of the continental lithosphere. J. Geodyn., 1984, 1, 143–166.
- Plant, J. A., O’brian, C., Tarney, J. and Hurdley, J., Geochemical criteria for the recognition of high heat production granites. In High Heat Production (HHP) Granites, Hydrothermal Circulation, and Ore Genesis, Trans. Institution of Mining and Metallurgy, London, 1985, pp. 263–286.
- Huston, D. L. (ed.), An Assessment of the Uranium and Geothermal Potential of North Queensland, Geoscience Australia, Record, 2010, vol. 14, pp. 1–108.
- Siegel, C., Bryan, S., Purdy, D., Gust, D., Allen, C., Uysal, T. and Champion, D., A new database compilation of whole-rock chemical and geochronological data of igneous rocks in Queensland: a new resource for HDR geothermal resource exploration. Proceedings of 2011 Australian Geothermal Energy Conference, Melbourne. Geosci. Austr., 2012, 239–244.
- Magotra, R., Fluid inclusion studies and geochemistry of Chowkri–Chhapoli fluorite deposit, Rajasthan (India), Ph.D. thesis, 2017.
- Artemieva, I. M. and Mooney, W. D., Thermal structure and evolution of Precambrian lithosphere: a global study. J. Geophys. Res., 2001, 106, 16387–16414.
- Whalen, J. B., Geochemistry of an island arc plutonic suite: the Uasilau-Yau Yau intrusive complex, New Britain PNG. J. Petrol., 1985, 26, 603–632.
- Taylor, S. R. and McLennan, S. M., The Continental Crust: Its Composition and Evolution, Blackwell, Oxford, UK, 1985, p. 312.
- Rudnick, R. L. and Gao, S., Composition of the continental crust. Treatise Geochem., 2003, 3, 1–64.
- Roy, R. F., Blackwell, D. D. and Francis Birch, Heat generation of plutonic rocks and continental heat flow provinces. Earth Planet. Sci. Lett., 1968, 5(1), 1–12.
- Lachenbruch, A. H., Preliminary geothermal model of the Sierra Nevada. J. Geophys. Res., 1968, 73, 6977.
- Sundar, A., Gupta, M. L. and Sharma, S. R., Heat flow in the Trans-Aravalli igneous suite, Tusham, India. J. Geodyn., 1990, 12, 89–100.
- Gupta, M. L., Thermal regime of the Indian shield. In Terrestrial Heat Flow and Geothermal Energy in Asia (eds Gupta, M. L. and Yamano, M.), IBH, Oxford, 1995, pp. 63–81.
- Knight, J. et al., The Khetri Copper Belt, Rajasthan: Iron Oxide Copper-Gold Terrane in the Proterozoic of NE India. In Hydrothermal Iron Oxide Copper-Gold and Related Deposits: A Global Perspective, 2 (ed. Porter, T. M.), PGC, Adelaide, 2002, pp. 321–341.
- Mishra, B., Kumar, K., Nanda, L. K. and Khandelwal, M. K., Uranium mineralization in the Khetri Sub-Basin, North Delhi Fold Belt, India. International symposium on uranium raw material for the nuclear fuel cycle: exploration, mining production, supply and demand, economics and environmental issues (URAM-2018), June 2018, pp. 285–288.
- Fehn, U., Cathies, L. M. and Holland, H. D., Hydrothermal convection and uranium deposits in abnormally radioactive plutons. Econ. Geol., 1978, 73, 1556–1566.
- Kaur, P., Chaudhri, N., Raczek, I., Kroner, A., Hofmann, A. W. and Okrusch, M., Zircon ages of late Palaeoproterozoic (ca. 1.72–1.70 Ga) extension-related granitoids in NE Rajasthan, India: regional and tectonic significance. Gondwana Res., 2011, 19(4), 1040–1053.
Abstract Views: 405
PDF Views: 125