Open Access Open Access  Restricted Access Subscription Access

Fungal degradation of cultural heritage monuments and management options


Affiliations
1 Building Pests and Mycology Laboratory, Environmental Science and Technology Group, CSIR-Central Building Research Institute, Roorkee 247 667, India
 

Fungi are widely recognized as major biodeteriogens of both modern and historical buildings/monuments. Different fungal taxa have been isolated from cultural heritage monuments/structures depending on climatic conditions, humidity level and surface material for fungal colonization. Deterioration of such monuments by fungi is through assimilatory biochemical and nonassimilatory mechanisms. This article provides information on fungi infesting historical monuments/sites across the globe and their management by various biocidal compounds. The preventive methods and potency of various essential oils against fungal growth on cultural heritage materials are also critically reviewed. The available information supports the use of essential oils for surface treatment or vapour exposure to prevent mould infestation on heritage monuments. Essential oils may also function as fungicidal agents in biocidal formulations/coatings.

Keywords

Biodegradation, Biocidal Essential Oils, Cultural Heritage, Fungi, Historical Monuments.
User
Notifications
Font Size

  • George, R. P., Ramya, S., Ramachandran, D. and Kamachi Mudali, U., Studies in biodegradation of normal concrete surface by fungus Fusarium sp. Cem. Coner. Res., 2013, 47, 8–13.
  • Ligon, B. L., Penicillin: its discovery and early development. Sem. Pediatr. Infect. Dis., 2004, 5, 52–57.
  • Baum, C., El-Tohamy, W. and Gruda, N., Increasing the productivity and product quality of vegetable crops using arbuscular mycorrhizal fungi: a review. Sci. Hortic., 2015, 187, 131–141.
  • Shoemaker, R. C. and House, D. E., Sick building syndrome (SBS) and exposure to water-damaged buildings: time series study, clinical trial and mechanisms. Neurotoxicol. Teratol., 2006, 28, 573–588.
  • Al-Hindi, R. R., Al-Najada, A. R. and Mohamed, S. A., Isolation and identification of some fruit spoilage fungi: screening of plant cell wall degrading enzymes. Afr. J. Microbiol. Res., 2011, 5, 443–448.
  • Voth, D. E. and Ballard, J. D., Clostridium difficile toxins: mechanism of action and role in disease. Clin. Microbiol. Rev., 2005, 18, 247–263.
  • Verma, R. K., Chaurasia, L. and Katiyar, S., Potential antifungal plants for controlling building fungi. Nat. Prod. Rad., 2008, 7, 374–387.
  • Straus, D. C., Cooley, J. D., Wong, W. C. and Jumper, C. A., Studies on the role of fungi in sick building syndrome. Arch. Environ. Health: Int. J., 2003, 58, 475–478.
  • Gorbushina, A. A., Life on the rocks. Environ. Microbiol., 2007, 9, 1613–1631.
  • Isola, D., Selbmann, L., Meloni, P., Maracci, E., Onofri, S. and Zucconi, L., Detrimental rock black fungi and biocides: a study on the Monumental Cemetery of Cagliari. In Science and Technology for the Conservation of Cultural Heritage, CRC Press, London, UK, 2013, pp. 83–86.
  • Jurado, V., Sanchez-Moral, S. and Saiz-Jimenez, C., Entomogenous fungi and the conservation of the cultural heritage: a review. Int. Biodeter. Biodeg., 2008, 62, 325–330.
  • Sterflinger, K., Fungi as geologic agents. Geomicrobiol. J., 2000, 17, 97–124.
  • Hall-Stoodley, L., Costerton, J. W. and Stoodley, P., Bacterial biofilms: from the natural environment to infectious diseases. Nature Rev. Microbiol., 2004, 2, 95.
  • Allsopp, D., Seal, K. J. and Gaylarde, C. C., Introduction to Biodeterioration, Cambridge University Press, 2004.
  • Dakal, T. C. and Cameotra, S. S., Microbially induced deterioration of architectural heritages: routes and mechanisms involved. Environ. Sci. Eur., 2012, 24, 36.
  • Blanchette, R. A., A review of microbial deterioration found in archaeological wood from different environments. Int. Biodeter. Biodeger., 2000, 46, 189–204.
  • Warscheid, T. and Braams, J., Biodeterioration of stone: a review. Int. Biodeter. Biodeger., 2000, 46, 343–368.
  • Pavía, S. and Caro, S., Origin of films on monumental stone. Stud. Conserv., 2006, 51, 177–188.
  • Adeyemi, A. O. and Gadd, G. M., Fungal degradation of calcium, lead and silicon bearing minerals. Biometals, 2005, 18, 269–281.
  • Banfield, J. F., Barker, W. W., Welch, S. A. and Taunton, A., Biological impact on mineral dissolution: application of the lichen model to understanding mineral weathering in the rhizosphere. Proc. Natl. Acad. Sci. USA, 1999, 96, 3404–3411.
  • Burford, E. P., Fomina, M. and Gadd, G. M., Fungal involvement in bio weathering and biotransformation of rocks and minerals. Mineral. Mag., 2003, 67, 1127–1155.
  • Burford, E. P., Kierans, M. and Gadd, G. M., Geomycology: fungi in mineral substrata. Mycologist, 2003, 17, 98–107.
  • Crispim, C. A., Gaylarde, P. M. and Gaylarde, C. C., Algal and cyanobacterial biofilms on calcareous historic buildings. Curr. Microbiol., 2003, 46, 79–82.
  • Harley, A. D. and Gilkes, R. J., Factors influencing the release of plant nutrient elements from silicate rock powders: a geochemical overview. Nutr. Cycl. Agroecosyst., 2000, 56, 11–36.
  • Monte, M., Oxalate film formation on marble specimens caused by fungus. J. Cult. Herit., 2003, 4, 255–258.
  • Grbic, M. V. L. and Vukojeviã, J. B., Role of fungi in biodeterioration process of stone in historic buildings. Proc. Natl. Acad. Sci. USA, 2009, 116, 245–251.
  • Kubicek, C. P., Punt, P. and Visser, J., Production of organic acids by filamentous fungi. Ind. Appl., 2010, 10, 215–234.
  • Griffin, P. S., Indictor, N. and Koestler, R. J., The biodeterioration of stone: a review of deterioration mechanisms, conservation case histories and treatment. Int. Biodeter., 1991, 28, 187–207.
  • Koestler, R. J., Charola, A. E., Wypyski, M. and Lee, J. J., Microbiologically induced deterioration of dolomitic and calcitic stone
  • as viewed by scanning electron microscopy. In Proceedings of the Fifth International Congress on Deterioration and Conservation of Stone, Switzerland, 1998, pp. 617–626; https://repository.si.edu/bitstream/ handle/10088/42895/mci27366.pdf?sequence=1&isAllowed=y
  • Gutarowska, B. and Czyżowska, A., The ability of filamentous fungi to produce acids on indoor building materials. Ann. Microbiol., 2009, 59, 807–813.
  • Gaylarde, C., Silva, M. R. and Warscheid, T., Microbial impact on building materials: an overview. Mater. Struct., 2003, 36, 342– 352.
  • Kumar, R. and Kumar, A. V., Biodeterioration of Stone in Tropical Environments: Overview, Getty Publication, Los Angeles, USA, 1999; https://books.google.co.in/books?hl=en&lr=&id=D_7NzE5vKS0C&oi=fnd&pg=PR7&dq=4.9.%09Kumar,+R.,+and+Kumar,+ A.+V.,+Biodeterioration+of+stone+in+tropical+environments:+an+ overview.,+Getty+Publications,1999&ots=yXv4nJ_Doo&sig=lJSXtTvUmylZh31XL9m2_ Q0T_n4#v=onepage&q&f=false
  • De Moraes Pinheiro, S. M. and Ribas Silva, M., Alteration of concrete microstructure by biodeterioration mechanisms. In Proceedings of the Conference Microbial Impact Building Materials, Lisbon, Portugal, 2003, pp. 48–57.
  • Berthelin, J., Microbial weathering processes in natural environments. Phys. Chem. Weather. Geochem. Cycles, Kluwer Academic Press, The Netherlands, 1988, pp. 33–59; https://doi.org/10.1007/ 978-94-009-3071-1_3.
  • Robert, M. and Berthelin, J., Role of biological and biochemical factors in soil mineral weathering. In Interactions of Soil Minerals Natural Organics and Microbes, SSSA Special Publication, USA, 1986, pp. 453–495.
  • Hämäläinen, V. et al., Enzymatic processes to unlock the lignin value. Front. Bioeng. Biotechnol., 2018, 6; https://doi.org/10.3389/fbioe.2018.00020.
  • Sterflinger, K. and Piñar, G., Microbial deterioration of cultural heritage and works of art – tilting at windmills. Appl. Microbiol. Biotechnol., 2013, 97(22), 9637–9646.
  • Vollertsen, J., Nielsen, A. H., Jensen, H. S., Wium-Andersen, T. and Hvitved-Jacobsen, T., Corrosion of concrete sewers – the kinetics of hydrogen sulfide oxidation. Sci. Total Environ., 2008, 394, 162–170.
  • Juan, Y., Jiang, N., Tian, L., Chen, X., Sun, W. and Chen, L., Effect of freeze–thaw on a midtemperate soil bacterial community and the correlation network of its members. Biomed. Res. Int., 2018; https://doi.org/10.1155/2018/8412429.
  • Krumbein, W., Microbial interactions with mineral materials. Int. Biodeter., 1988, 7, 78–100.
  • Warscheid, T., Prevention and remediation against biodeterioration of building materials. In Proceedings of the Second International RILEM Workshop, Microbial Impact on Building Materials, 2004; http://demo.webdefy.com/rilem-new/wp-content/uploads/2016/ 10/pro044-004.pdf
  • Jain, A., Bhadauria, S., Kumar, V. and Chauhan, R. S., Biodeterioration of sandstone under the influence of different humidity levels in laboratory conditions. Build. Environ., 2009, 44, 1276–1284.
  • Wendler, E., New materials and approaches for the conservation of stone. Environ. Sci. Res. Rep., 1997, 20, 181–198.
  • Koestler, R. J., Warscheid, Th. and Nieto, F., Biodeterioration: risk factors and their management. In Saving our Cultural Heritage: the Conservation of Historic Stone Structures, John Wiley, New York, 1997, pp. 25–36.
  • Michoinová, D., New materials for the protection of cultural heritage. 2007; http://www.teilar.gr/dbData/ProfAnn/profann-c14b547b.pdf 46. Favaro, M., Mendichi, R., Ossola, F., Russo, U., Simon, S., Tomasin, P. and Vigato, P. A., Evaluation of polymers for conservation treatments of outdoor exposed stone monuments. Part I: photo-oxidative weathering. Polym. Degrad. Stabil., 2006, 91, 3083–3096.
  • Avnir, D., The Sol–Gel–Xerogel Transition, Hebrew University, Jerusalem (Israel), 1993; https://apps.dtic.mil/dtic/tr/fulltext/u2/ a276647.pdf
  • Le Metayer-Levrel, G., CastanierOrial, G., Loubiere, J. F. and Perthuisot, J. P., Applications of bacterial carbonatogenesis to the protection and regeneration of limestones in buildings and historic patrimony. Sediment. Geol., 1999, 126, 25–34.
  • Fabbri, P., Messori, M., Montecchi, M., Nannarone, S., Pasquali, L., Pilati, F. and Toselli, M., Perfluoropolyether-based organic– inorganic hybrid coatings. Polymer, 2006, 47, 1055–1062.
  • Haas, K. H., Amberg-Schwab, S., Rose, K. and Schottner, G., Functionalized coatings based on inorganic–organic polymer and their combination with vapor deposited inorganic thin films. Surf. Coat. Technol., 1995, 111, 72–79.
  • Bartholome, C., Beyou, E., Bourg-Lami, E., Chaumont, P. A. and Zydowicz, N., Nitroxide-mediated polymerizations from silica nanoparticle surfaces: ‘graft from’ polymerization of styrene using a triethoxysilyl-terminated alkoxyamine initiator. Macromolecules, 2003, 36, 7946–7952.
  • Von Plehwe-Leisen, E., Warscheid, Th. and Leisen, H., Studies of long-term behaviour of conservation agents and of microbiological contamination on twenty years exposed treated sandstone cubes.
  • In Proceedings of the 8th International Congress on Deterioration and Conservation of Stone (ed. Riederer, J.), Rathgen-Forschungslabor, Berlin, Germany, 1996, vol. 2, pp. 1029–1037.
  • Jin, Q. and Kirk, M. F., pH as a primary control in environmental microbiology: thermodynamic perspective. Front. Environ. Sci., 2018, 16; https://doi.org/10.3389/fenvs.2018.00021.
  • Sharma, K., Microbiological impacts on the cultural heritage. Int. J. Comp. Internet, Manage., 2011, 19, 56.1–56.5.
  • Garg, K. L., Jain, K. K. and Mishra, A. K., Role of fungi in the deterioration of wall paintings. Sci. Total Environ., 1995, 167, 255–271.
  • Duke, J. A., Bogenschutz-Godwin, M. J., duCellier, J. and Duke, P. K., Handbook of Medicinal Herbs, CRC Press, Boca Raton, Florida, USA, 1987; https://mirror.explodie.org/Handbook%20of%20Medicinal%20Spices%20.pdf
  • Edris, A. E. and Farrag, E. S., Antifungal activity of peppermint and sweet basil essential oils and their major aroma constituents on some plant pathogenic fungi from the vapor phase. Food/ Nahrung, 2003, 47, 117–121.
  • Borrego, S., Valdés, O., Vivar, I., Lavin, Guiamet, P., Battistoni, P. and Borges, P., Essential oils of plants as biocides against microorganisms isolated from Cuban and Argentine documentary heritage. ISRN Microbiol., 2012, 1–7; https://doi.org/10.5402/2012/826786.
  • Cuzman, O. A., Olmi, R., Riminesi, C. and Tiano, P., Preliminary study on controlling black fungi dwelling on stone monuments by using a microwave heating system. Int. J. Conserv. Sci., 2013, 4, 133–144.
  • Hasheminejad, N., Khodaiyan, F. and Safari, M., Improving the antifungal activity of clove essential oil encapsulated by chitosan nanoparticles. Food Chem., 2019, 275, 113–122.
  • Rakotonirainy, M. S. and Lavédrine, B., Screening for antifungal activity of essential oils and related compounds to control the biocontamination in libraries and archives storage areas. Int. Biodeter. Biodeger., 2005, 55, 141–147.
  • Campaniello, D., Corbo, M. R. and Sinigaglia, M., Antifungal activity of eugenol against Penicillium, Aspergillus and Fusarium species. J. Food Prot., 2010, 73, 1124–1128.
  • Verma, R. K. and Devi, D., Studies for antifungal activity of selected concrete sealers on white cement panels. Int. J. Sci. Eng. Tech. Res., 2015, 4, 2081–2087.
  • Fidanza, M. R. and Caneva, G., Natural biocides for the conservation of stone cultural heritage: a review. J. Cult. Herit., 2019, 38, 271–286.
  • Benkovičová, M., Kisová, Z., Bučkov, M., Majková, E., Šiffalovič, P. and Pangallo, D., The antifungal properties of superhydrophobic nanoparticles and essential oils on different material surfaces. Coatings, 2019, 9, 176.
  • Kakakhel, M. A., Wu, F., Gu, J. D., Feng, H., Shah, K. and Wang, W., Controlling biodeterioration of cultural heritage objects with biocides: a review. Int. Biodeter. Biodegr., 2019, 143, 104721.
  • Sterflinger, K., Fungi: their role in deterioration of cultural heritage. Fungal Biol. Rev., 2010, 24, 47–55.
  • Diakumaku, E., Gorbushina, A. A., Krumbein, W. E., Panina, L. and Soukharjevski, S., Black fungi in marble and limestones – an aesthetical, chemical and physical problem for the conservation of monuments. Sci. Total Environ., 1995, 167, 295–304.
  • Lavin, P., de Saravia, S. G. and Guiamet, P., Scopulariopsis sp. and Fusarium sp. in the documentary heritage: evaluation of their biodeterioration ability and antifungal effect of two essential oils. Microb. Ecol., 2016, 71, 628–633.
  • Rojas, T. I., Aira, M. J., Batista, A., Cruz, I. L. and González, S., Fungal biodeterioration in historic buildings of Havana (Cuba). Grana, 2012, 51, 44–51.
  • Bhatnagar, P. and Jain, S. K., Alternative control techniques against fungal colonization for preserving monument deterioration.
  • Int. J. Curr. Microbiol. Appl. Sci., 2014, 3, 40–43.
  • Gupta, S. P. and Sharma, K., Biodeterioration and preservation of Sita Devi temple, Deorbija, Chhattisgarh, India. Int. J. Conserv. Sci., 2011, 2, 89–94.
  • Stupar, M., Grbić, M. L., Džamić, A., Unković, N., Ristić, M., Jelikić, A. and Vukojević, J., Antifungal activity of selected essential oils and biocide benzalkonium chloride against the fungi isolated from cultural heritage object. S. Afr. J. Bot., 2014, 93, 118–124.
  • Gupta, S. P. and Sharma, K., The role of fungi in biodeterioration of sandstone with reference to Mahadev temple, Bastar, Chhatisgarh.
  • Rec. Res. Sci. Technol., 2012, 4, 18–21.
  • Bastian, F. and Alabouvette, C., Lights and shadows on the conservation of a rock art cave: the case of Lascaux cave. Int. J. Speleol., 2009, 38, 6.
  • Abdelhafez, A. A. M., El-Wekeel, F. M., Ramadan, E. M. and Abed-Allah, A. A., Microbial deterioration of archaeological marble: identification and treatment. Ann. Agric. Sci., 2012, 57, 137–144.
  • Farooq, M., Hassan, M. and Gull, F., Microbial deterioration of stone monuments of Dharmarajika, Taxila. J. Microbiol. Exp., 2015, 2, 36–41.
  • Dupont, J., Jacquet, C., Dennetiere, Lacoste, S., Bousta, F., Orial, G. and Roquebert, M., Invasion of the French Paleolithic painted cave of Lascaux by members of the Fusarium solani species complex. Mycologia, 2007, 99, 526–533.
  • Hoffland, E., Kuyper, T. W., Wallander, H., Plassard, C., Gorbushina, A. A., Haselwandter, K. and Sen, R., The role of fungi in weathering. Front. Ecol. Environ., 2004, 2, 258–264.
  • Berner, M., Wanner, G. and Lubitz, W., A comparative study of the fungal flora present in medieval wall paintings in the chapel of the castle Herberstein and in the parish church of St Georgen in Styria, Austria. Int. Biodeter. Biodegr., 1997, 40, 53–61.
  • Gómez-Alarcón, G., Munoz, M., Arino, X. and Ortega-Calvo, J.
  • J., Microbial communities in weathered sandstones: the case of Carrascosadel Campo church. Spain. Sci. Total Environ., 1995, 167, 249–254.
  • Caneva, G., Nugari, M. P., Ricci, S. and Salvadori, O., Pitting of marble Roman monuments and the related microflora. In Proceedings of the 7th International Congress on Deterioration and Conservation of Stone, Lisbon, Portugal, 1992; https://www.
  • researchgate.net/publication/284652846_Pitting_of_marble_roman_ monuments_and_the_related_microflora
  • Monte, M., Biogenesis of oxalate patinas on marble specimens in fungal culture. Aerobiologia, 2003, 19, 271–275.
  • Li, Q., Zhang, B., Wang, L. and Ge, Q., Distribution and diversity of bacteria and fungi colonizing ancient Buddhist statues analyzed by high-throughput sequencing. Int. Biodeter. Biodeger., 2017, 117, 245–254.
  • Suihko, M. L., Alakomi, H. L., Gorbushina, A., Fortune, I., Marquardt, J. and Saarela, M., Characterization of aerobic bacterial and fungal microbiota on surfaces of historic Scottish monuments. Syst. Appl. Microbiol., 2007, 30, 494–508.
  • Evans, L. V. (ed.), Biofilms: Recent Advances in their Study and Control, CRC Press, 2003.
  • Levinskaitė, L. and Paškevičius, A., Fungi in water-damaged buildings of vilnius old city and their susceptibility towards disinfectants and essential oils. Indoor. Built Environ., 2013, 22, 766– 775.
  • Kumar, M. and Verma, R. K., Fungi diversity, their effects on building materials, occupants and control – a brief review. J. Sci. Ind. Res., 2010, 69, 675–661.
  • Lingan, K., Antifungal activity of Artemisia nilagirica essential oil from the Western Ghats, Nilgiris against food borne fungi. J. Appl. Microbiol. Biochem., 2018, 2, 2–6.
  • Iqbal, M. C. M., Meiyalaghan, S., Wijesekara, K. B. and Abeyratne, K. P., Antifungal activity from water extracts of some common weeds. Pak. J. Biol. Sci., 2001, 4, 843–845.
  • Kumar, V. P., Chauhan, S., Padh, H. and Rajani, M., Search for antibacterial and antifungal agents from selected Indian medicinal plants. J. Ethnopharmacol., 2006, 107, 182–188.
  • Kurucheve, V., Ezhilan, J. G. and Jayaraj, J., Screening of higher plants for fungitoxicity against Rhizoctonia solani in vitro. Indian Phytopathol., 1997, 50, 235–241.
  • Yadava, R. N. and Tiwari, L., New antifungal flavone glycoside from Butea monosperma O. Kuntze. J. Enzyme Inhib. Med. Chem., 2007, 22, 497–500.
  • Banach, M., Szczygłowska, R., Pulit, J. and Bryk, M., Building materials with antifungal efficacy enriched with silver nanoparticles. Chem. Sci. J., 2014, 5, 1–5.

Abstract Views: 229

PDF Views: 140




  • Fungal degradation of cultural heritage monuments and management options

Abstract Views: 229  |  PDF Views: 140

Authors

Prachi Tyagi
Building Pests and Mycology Laboratory, Environmental Science and Technology Group, CSIR-Central Building Research Institute, Roorkee 247 667, India
Rajesh K. Verma
Building Pests and Mycology Laboratory, Environmental Science and Technology Group, CSIR-Central Building Research Institute, Roorkee 247 667, India
Neeraj Jain
Building Pests and Mycology Laboratory, Environmental Science and Technology Group, CSIR-Central Building Research Institute, Roorkee 247 667, India

Abstract


Fungi are widely recognized as major biodeteriogens of both modern and historical buildings/monuments. Different fungal taxa have been isolated from cultural heritage monuments/structures depending on climatic conditions, humidity level and surface material for fungal colonization. Deterioration of such monuments by fungi is through assimilatory biochemical and nonassimilatory mechanisms. This article provides information on fungi infesting historical monuments/sites across the globe and their management by various biocidal compounds. The preventive methods and potency of various essential oils against fungal growth on cultural heritage materials are also critically reviewed. The available information supports the use of essential oils for surface treatment or vapour exposure to prevent mould infestation on heritage monuments. Essential oils may also function as fungicidal agents in biocidal formulations/coatings.

Keywords


Biodegradation, Biocidal Essential Oils, Cultural Heritage, Fungi, Historical Monuments.

References





DOI: https://doi.org/10.18520/cs%2Fv121%2Fi12%2F1553-1560