Open Access Open Access  Restricted Access Subscription Access

Molecular Insights into Crystallization of Minerals: The Case of First-Row Transition Metal Salt Hydrates


Affiliations
1 Materials Chemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110 016, India
 

How does Nature, the virtuoso chemist, assemble a mineral, an inorganic crystalline compound with a specific composition? How does one account for the directional interactions responsible for the final assembly of a crystal hydrate observed through an X-ray lens? Che­mical insights into the aggregation of molecules resulting into simple salt hydrates still evade experimental and theoretical studies. This article gives a perspective of how Nature dictates the structural landscape of MSO4–H2O in terms of supramolecular aggregation between the molecular species {M(H2O)6}2+, SO42- and H2O interacting at supersaturation through H-bonding and subsequent coordination forces.

Keywords

Crystallization, Hydrogen-Bonding, Salt Hydrates, Structural Landscape, Supramolecular Aggregation, Topotactic Reaction, Transition Metal.
User
Notifications
Font Size

  • Desiraju, G., Vittal, J. J. and Ramanan, A., Crystal Engineering a Textbook, World Scientific Publishing Company, Singapore, 2011.
  • De Yoreo, J. J. and Vekilov, P. G., Principles of crystal nucleation and growth. Rev. Mineral. Geochem., 2003, 54, 57–93.
  • Sosso, C., G. C., Chen, J., Cox, S. J., Fitzner, M., Pedevilla, P., Zen, A. and Michaelides, A., Crystal nucleation in liquids: open questions and future challenges in molecular dynamics simulations. Chem. Rev., 2016, 116, 7078–7116.
  • De Yoreo J. J. et al., Crystallization by particle attachment in synthetic, biogenic and geologic environments. Science, 2015, 349, 6760(1–9).
  • Findlay, A. and Campbell, A. N., The Phase Rule and its Applications, Longmans, Green and Co, London, UK, 1939, 8th edn.
  • Tsironi, I., Schlesinger, D., Späh, A., Eriksson, L., Segad, M. and Perakis, F., Brine rejection and hydrate formation upon freezing of NaCl aqueous solutions. Phys. Chem. Chem. Phys., 2020, 22, 7625–7632.
  • Vleet, M. J. V., Weng, T., Li, X. and Schmidt, J. R., In situ, timeresolved, and mechanistic studies of metal–organic framework nucleation and growth. Chem. Rev., 2018, 118, 3681–3721.
  • Desiraju, G. R., Supramolecular synthons in crystal engineering – a new organic synthesis. Angew. Chem. Int. Ed. Engl., 1995, 34, 2311–2327.
  • Ramanan, A. and Whittingham, M. S., How molecules turn into solids: the case of self-assembled metal – organic frameworks. Cryst. Growth Des., 2006, 6, 2419–2421.
  • Upreti, S., Datta, A. and Ramanan, A., Role of nonbonding interactions in the crystal growth of phenazinediamine tetrahydrate: new insights into the occurrence of 2D water layers in crystal hydrates. Cryst. Growth Des., 2007, 7, 966–971.
  • Thomas, J. and Ramanan, A., Growing crystals from solution: by design or by default? Curr. Sci., 2007, 93, 1664–1667.
  • Thomas, J. and Ramanan, A., Growth of copper pyrazole complex templated phosphomolybdates: supramolecular interactions dictate nucleation of a crystal. Cryst. Growth Des., 2008, 8, 3390–3400.
  • Singh, M., Kumar, D., Thomas, J. and Ramanan, A., Crystallization of copper(II) sulfate based minerals and MOF from solution: chemical insights into the supramolecular interactions. J. Chem. Sci., 2010, 122, 757–769.
  • Singh, M., Thomas, J. and Ramanan, A., Understanding supramolecular interactions provides clues for building molecules into minerals and materials: a retrosynthetic analysis of copper-based solids. Aust. J. Chem., 2010, 63, 565–572.
  • Singh, M. and Ramanan, A., Crystal engineering of polyoxomolybdates based metal–organic solids: the case of chromium molybdate cluster-based metal complexes and coordination polymers. Crystal. Growth Des., 2011, 11, 3381–3394.
  • Jadon, M., Srivastava, M., Roy, P. K. and Ramanan, A., From molecules to materials: structural landscape of zinc terephthalates grown from solution. J. Chem. Sci., 2021, 133(0093), 1–20.
  • Kitaigorodskii, A. I., The principle of close packing and the condition of thermodynamic stability of organic crystals. Acta Crystallogr., 1965, 18, 585–590.
  • David, W. I. F., Shankland, K., Pulham, C. R., Blagden, N., Davey, R. J. and Song, M., Polymorphism in benzamide. Angew. Chem. Int. Ed. Engl., 2005, 44, 7032–7035.
  • Bond, A. D., Boese, R. and Desiraju, G. R., On the polymorphism of aspirin: crystalline aspirin as intergrowths of two ‘polymorphic’ domains. Angew. Chem., Int. Ed. Engl., 2007, 46, 615–617.
  • Chadwick, K., Davey, R. G., Sadiq, G., Cross, W. and Pritchard, R., The utility of a ternary phase diagram in the discovery new cocrystal forms. CrysEngComm, 2009, 11, 412–414.
  • Hörner, T. G. and Klüfers, P., The species of Fehling’s solution. Eur. J. Inorg. Chem., 2016, 12, 1798–1807.
  • Gibb, B. C., The centenary (maybe) of the hydrogen bond. Nature Chem., 2020, 12, 665–667.
  • Bragg, W. H. and Bragg, W. L., The reflection of X-rays by crystals. Proc. R. Soc. London, Ser. A, 1913, 88, 428–438.
  • Klewe, B. and Pedersen, B., The crystal structure of sodium chloride dihydrate. Acta Crystallogr. B, 1974, 30, 2363–2371.
  • Hawthorne, F. C., Krivovichev, S. V. and Burns, P. C., The crystal chemistry of sulfate minerals. Rev. Mineral. Geochem., 2000, 40, 1–101.
  • Laidler, K. J. and Meiser, J. H. and Sanctuary, B. C., Physical Chemistry, Brooks Cole, Pacific Grove, California, USA, 2002, 4th edn.
  • Sögütoglu, L. C. et al., Understanding the hydration process of salts: the impact of a nucleation barrier. Crystal. Growth Des., 2019, 19, 2279–2288.
  • Nambu, M., Tanida, K. and Kitamura, T., Mallardite from the Jokoku mine, Hokkaido, Japan. J. Mineral. Petrol. Sci., 1979, 74, 406–412.
  • Pašava, J., Breiter, K., Huka, M. and Korecký, J., Chvaleticeite, (Mn,Mg)SO4⋅6H2O, a new mineral. Neues Jahrb Mineral., Monatsh., 1986, 9, 121–125.
  • Nambu, M., Tanida, K., Kitamura, T. and Kato, E., Jôkokuite, MnSO4⋅5H2O, a new mineral from the Jôkoku mine, Hokkaido, Japan. Mineral. J., 1978, 9, 28–38.
  • Iles, M. W., A new manganese mineral. Am. Chem. J., 1881, 3, 420–422.
  • Giester, G. and Wildner, M., The crystal structures of kieseritetype compounds. II: crystal structures of Me(II)SeO4 ⋅ H2O (Me = Mg, Mn, Co, Ni, Zn). Neues Jahrb. Mineral., Monatsh., 1991, 135–144.
  • Rentzeperis, P. J., Die Kristallstruktur von wasserfreiem MnSO4, und Bemerkungen zur Struktur der beiden CoSO4-Modifikationen. Neues Jahrb Mineral., Monatsh., 1958, 1958, 210–215.
  • Peterson, R. C., The relationship between Cu content and distortion in the atomic structure of melanterite from the Richmond mine, iron Mountain, California. Can. Mineral., 2003, 41, 937– 994.
  • Karnitskii, V. A. and Nekrasova, O. I., Secondary minerals of the Nikotovka mercury deposit. Miner. Res., 1930, 1, 135–138.
  • Jambor, J. L. and Traill, R. J., On rozenite and siderotil. Can. Mineral., 1963, 7, 751–763.
  • Talla, D. and Wildner, M., Investigation of the kieserite–szomolnokite solid–solution series, (Mg,Fe)SO4⋅H2O, with relevance to Mars: crystal chemistry, FTIR, and Raman spectroscopy under ambient and martian temperature conditions. Am. Mineral., 2019, 104, 1732–1749.
  • Weil, M., The high-temperature β modification of iron(II) sulphate. Acta Crystallogr. E, 2007, 63, i192.
  • Kellersohn, T., Delaplane, R. G. and Olovsson, I., Disorder of a trigonally planar coordinated water molecule in cobalt sulfate heptahydrate, CoSO4⋅7D2O. Z. Naturforsch., 1991, B46, 1635–1640.
  • Zalkin, A., Ruben, H. and Templeton, D. H., The crystal structure of cobalt sulfate hexahydrate. Acta Crystallogr., 1962, 15, 1219– 1224.
  • Kellersohn, T., Structure of cobalt sulfate tetrahydrate. Acta Crystallogr. C, 1992, 48, 776–779.
  • Bechtold, A. and Wildner, M., Crystal chemistry of the kieserite– cobaltkieserite solid solution, Mg1–xCox(SO4)⋅H2O: well-behaved oddities. Eur. J. Mineral., 2016, 28, 43–52.
  • Wyckoff, R. W. G., The Structure of Crystals, Interscience Publishers, Inc., New York, USA, 1951, pp. 40–41.
  • Ptasiewicz-Bak, H., Olovsson, I. and McIntyre, G. J., Charge density in orthorhombic NiSO4⋅7H2O at room temperature and 25 K. Acta Crystallogr., 1997, 53, 325–336.
  • Frondel, C. and Palache, C., Retgersite, NiSO4⋅6H2O, a new mineral. Am. Mineral, 1949, 34, 188–194.
  • Milton, C., Evans Jr, H. T. and Johnson, R. G., Dwornikite, (Ni,Fe)SO4⋅⋅⋅H2O, a member of the Kieserite Group from Minasragra, Peru. Mineral. Mag., 1982, 46, 351–355.
  • Dimaras, P. I., Morphology and structure of anhydrous nickel sulphate. Acta Crystallogr., 1957, 10, 313–315.
  • Leverett, P., McKinnon, A. R. and Williams, P. A., New data for boothite, CuSO4⋅7H2O, from Burranga, New South Wales. Aus. J. Mineral., 2004, 10, 3–6.
  • Barth, T. F. W. and Tunell, G., The space-lattice and optical orientation of chalcanthite (CuSO4⋅5H2O); an illustration of the use of the Weissenberg X-ray goniometer in the triclinic system. Am. Mineral., 1933, 18, 187–194.
  • Jambor, J. L., Second occurrence of bonattite. Can. Mineral., 1962, 7, 245–252.
  • Jambor, J. L., Lachance, G. R. and Courville, S., Poitevinite, a new mineral. Can. Mineral., 1964, 8, 109–110.
  • Kokkoros, P. A. and Rentzeperis, P. J., The crystal structure of the anhydrous sulfates of copper and zinc. Acta Crystallogr., 1958, 11, 361–364.
  • Anderson, J. L., Peterson, R. C. and Swaison, I. P., Combined neutron powder and X-ray single-crystal diffraction refinement of the atomic structure and hydrogen bonding of goslarite (ZnSO4⋅7H2O). Miner. Mag., 2005, 69, 259–271.
  • Thorpe, T. E. and Watts, J. I., On the specific volume of water of crystallisation. J. Chem. Soc., 1880, 37, 102–117.
  • Blake, A. J., Cooke, P. A., Hubberstey, P. and Sampson, C. L., Zinc(II) sulfate tetrahydrate. Acta Crystallogr. E, 2001, 57, i109– i111.
  • Jambor, J. L. and Boyle, R. W., Gunningite, a new zinc sulphate from the Keno Hill–Galena Hill area, Yukon. Can. Mineral., 1962, 7, 209–218.
  • Wildner, M. and Giester, G., Crystal structure refinements of synthetic chalcocyanite (CuSO4) and zincosite (ZnSO4). Mineral. Petrol., 1988, 39, 201–209.
  • Spiess, M. and Gruehn, R., H-ZnSO4, das ersteSulfatmiteinerkubischen H-Cristobalit-Struktur. Naturwissenschaften, 1978, 65, 594–594.

Abstract Views: 418

PDF Views: 141




  • Molecular Insights into Crystallization of Minerals: The Case of First-Row Transition Metal Salt Hydrates

Abstract Views: 418  |  PDF Views: 141

Authors

Preethi Thomas
Materials Chemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110 016, India
Shailabh Tewari
Materials Chemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110 016, India
Manisha Jadon
Materials Chemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110 016, India
Bharti Singh
Materials Chemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110 016, India
Arunachalam Ramanan
Materials Chemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110 016, India

Abstract


How does Nature, the virtuoso chemist, assemble a mineral, an inorganic crystalline compound with a specific composition? How does one account for the directional interactions responsible for the final assembly of a crystal hydrate observed through an X-ray lens? Che­mical insights into the aggregation of molecules resulting into simple salt hydrates still evade experimental and theoretical studies. This article gives a perspective of how Nature dictates the structural landscape of MSO4–H2O in terms of supramolecular aggregation between the molecular species {M(H2O)6}2+, SO42- and H2O interacting at supersaturation through H-bonding and subsequent coordination forces.

Keywords


Crystallization, Hydrogen-Bonding, Salt Hydrates, Structural Landscape, Supramolecular Aggregation, Topotactic Reaction, Transition Metal.

References





DOI: https://doi.org/10.18520/cs%2Fv122%2Fi1%2F39-46