Open Access
Subscription Access
Molecular Insights into Crystallization of Minerals: The Case of First-Row Transition Metal Salt Hydrates
How does Nature, the virtuoso chemist, assemble a mineral, an inorganic crystalline compound with a specific composition? How does one account for the directional interactions responsible for the final assembly of a crystal hydrate observed through an X-ray lens? Chemical insights into the aggregation of molecules resulting into simple salt hydrates still evade experimental and theoretical studies. This article gives a perspective of how Nature dictates the structural landscape of MSO4–H2O in terms of supramolecular aggregation between the molecular species {M(H2O)6}2+, SO42- and H2O interacting at supersaturation through H-bonding and subsequent coordination forces.
Keywords
Crystallization, Hydrogen-Bonding, Salt Hydrates, Structural Landscape, Supramolecular Aggregation, Topotactic Reaction, Transition Metal.
User
Font Size
Information
- Desiraju, G., Vittal, J. J. and Ramanan, A., Crystal Engineering a Textbook, World Scientific Publishing Company, Singapore, 2011.
- De Yoreo, J. J. and Vekilov, P. G., Principles of crystal nucleation and growth. Rev. Mineral. Geochem., 2003, 54, 57–93.
- Sosso, C., G. C., Chen, J., Cox, S. J., Fitzner, M., Pedevilla, P., Zen, A. and Michaelides, A., Crystal nucleation in liquids: open questions and future challenges in molecular dynamics simulations. Chem. Rev., 2016, 116, 7078–7116.
- De Yoreo J. J. et al., Crystallization by particle attachment in synthetic, biogenic and geologic environments. Science, 2015, 349, 6760(1–9).
- Findlay, A. and Campbell, A. N., The Phase Rule and its Applications, Longmans, Green and Co, London, UK, 1939, 8th edn.
- Tsironi, I., Schlesinger, D., Späh, A., Eriksson, L., Segad, M. and Perakis, F., Brine rejection and hydrate formation upon freezing of NaCl aqueous solutions. Phys. Chem. Chem. Phys., 2020, 22, 7625–7632.
- Vleet, M. J. V., Weng, T., Li, X. and Schmidt, J. R., In situ, timeresolved, and mechanistic studies of metal–organic framework nucleation and growth. Chem. Rev., 2018, 118, 3681–3721.
- Desiraju, G. R., Supramolecular synthons in crystal engineering – a new organic synthesis. Angew. Chem. Int. Ed. Engl., 1995, 34, 2311–2327.
- Ramanan, A. and Whittingham, M. S., How molecules turn into solids: the case of self-assembled metal – organic frameworks. Cryst. Growth Des., 2006, 6, 2419–2421.
- Upreti, S., Datta, A. and Ramanan, A., Role of nonbonding interactions in the crystal growth of phenazinediamine tetrahydrate: new insights into the occurrence of 2D water layers in crystal hydrates. Cryst. Growth Des., 2007, 7, 966–971.
- Thomas, J. and Ramanan, A., Growing crystals from solution: by design or by default? Curr. Sci., 2007, 93, 1664–1667.
- Thomas, J. and Ramanan, A., Growth of copper pyrazole complex templated phosphomolybdates: supramolecular interactions dictate nucleation of a crystal. Cryst. Growth Des., 2008, 8, 3390–3400.
- Singh, M., Kumar, D., Thomas, J. and Ramanan, A., Crystallization of copper(II) sulfate based minerals and MOF from solution: chemical insights into the supramolecular interactions. J. Chem. Sci., 2010, 122, 757–769.
- Singh, M., Thomas, J. and Ramanan, A., Understanding supramolecular interactions provides clues for building molecules into minerals and materials: a retrosynthetic analysis of copper-based solids. Aust. J. Chem., 2010, 63, 565–572.
- Singh, M. and Ramanan, A., Crystal engineering of polyoxomolybdates based metal–organic solids: the case of chromium molybdate cluster-based metal complexes and coordination polymers. Crystal. Growth Des., 2011, 11, 3381–3394.
- Jadon, M., Srivastava, M., Roy, P. K. and Ramanan, A., From molecules to materials: structural landscape of zinc terephthalates grown from solution. J. Chem. Sci., 2021, 133(0093), 1–20.
- Kitaigorodskii, A. I., The principle of close packing and the condition of thermodynamic stability of organic crystals. Acta Crystallogr., 1965, 18, 585–590.
- David, W. I. F., Shankland, K., Pulham, C. R., Blagden, N., Davey, R. J. and Song, M., Polymorphism in benzamide. Angew. Chem. Int. Ed. Engl., 2005, 44, 7032–7035.
- Bond, A. D., Boese, R. and Desiraju, G. R., On the polymorphism of aspirin: crystalline aspirin as intergrowths of two ‘polymorphic’ domains. Angew. Chem., Int. Ed. Engl., 2007, 46, 615–617.
- Chadwick, K., Davey, R. G., Sadiq, G., Cross, W. and Pritchard, R., The utility of a ternary phase diagram in the discovery new cocrystal forms. CrysEngComm, 2009, 11, 412–414.
- Hörner, T. G. and Klüfers, P., The species of Fehling’s solution. Eur. J. Inorg. Chem., 2016, 12, 1798–1807.
- Gibb, B. C., The centenary (maybe) of the hydrogen bond. Nature Chem., 2020, 12, 665–667.
- Bragg, W. H. and Bragg, W. L., The reflection of X-rays by crystals. Proc. R. Soc. London, Ser. A, 1913, 88, 428–438.
- Klewe, B. and Pedersen, B., The crystal structure of sodium chloride dihydrate. Acta Crystallogr. B, 1974, 30, 2363–2371.
- Hawthorne, F. C., Krivovichev, S. V. and Burns, P. C., The crystal chemistry of sulfate minerals. Rev. Mineral. Geochem., 2000, 40, 1–101.
- Laidler, K. J. and Meiser, J. H. and Sanctuary, B. C., Physical Chemistry, Brooks Cole, Pacific Grove, California, USA, 2002, 4th edn.
- Sögütoglu, L. C. et al., Understanding the hydration process of salts: the impact of a nucleation barrier. Crystal. Growth Des., 2019, 19, 2279–2288.
- Nambu, M., Tanida, K. and Kitamura, T., Mallardite from the Jokoku mine, Hokkaido, Japan. J. Mineral. Petrol. Sci., 1979, 74, 406–412.
- Pašava, J., Breiter, K., Huka, M. and Korecký, J., Chvaleticeite, (Mn,Mg)SO4⋅6H2O, a new mineral. Neues Jahrb Mineral., Monatsh., 1986, 9, 121–125.
- Nambu, M., Tanida, K., Kitamura, T. and Kato, E., Jôkokuite, MnSO4⋅5H2O, a new mineral from the Jôkoku mine, Hokkaido, Japan. Mineral. J., 1978, 9, 28–38.
- Iles, M. W., A new manganese mineral. Am. Chem. J., 1881, 3, 420–422.
- Giester, G. and Wildner, M., The crystal structures of kieseritetype compounds. II: crystal structures of Me(II)SeO4 ⋅ H2O (Me = Mg, Mn, Co, Ni, Zn). Neues Jahrb. Mineral., Monatsh., 1991, 135–144.
- Rentzeperis, P. J., Die Kristallstruktur von wasserfreiem MnSO4, und Bemerkungen zur Struktur der beiden CoSO4-Modifikationen. Neues Jahrb Mineral., Monatsh., 1958, 1958, 210–215.
- Peterson, R. C., The relationship between Cu content and distortion in the atomic structure of melanterite from the Richmond mine, iron Mountain, California. Can. Mineral., 2003, 41, 937– 994.
- Karnitskii, V. A. and Nekrasova, O. I., Secondary minerals of the Nikotovka mercury deposit. Miner. Res., 1930, 1, 135–138.
- Jambor, J. L. and Traill, R. J., On rozenite and siderotil. Can. Mineral., 1963, 7, 751–763.
- Talla, D. and Wildner, M., Investigation of the kieserite–szomolnokite solid–solution series, (Mg,Fe)SO4⋅H2O, with relevance to Mars: crystal chemistry, FTIR, and Raman spectroscopy under ambient and martian temperature conditions. Am. Mineral., 2019, 104, 1732–1749.
- Weil, M., The high-temperature β modification of iron(II) sulphate. Acta Crystallogr. E, 2007, 63, i192.
- Kellersohn, T., Delaplane, R. G. and Olovsson, I., Disorder of a trigonally planar coordinated water molecule in cobalt sulfate heptahydrate, CoSO4⋅7D2O. Z. Naturforsch., 1991, B46, 1635–1640.
- Zalkin, A., Ruben, H. and Templeton, D. H., The crystal structure of cobalt sulfate hexahydrate. Acta Crystallogr., 1962, 15, 1219– 1224.
- Kellersohn, T., Structure of cobalt sulfate tetrahydrate. Acta Crystallogr. C, 1992, 48, 776–779.
- Bechtold, A. and Wildner, M., Crystal chemistry of the kieserite– cobaltkieserite solid solution, Mg1–xCox(SO4)⋅H2O: well-behaved oddities. Eur. J. Mineral., 2016, 28, 43–52.
- Wyckoff, R. W. G., The Structure of Crystals, Interscience Publishers, Inc., New York, USA, 1951, pp. 40–41.
- Ptasiewicz-Bak, H., Olovsson, I. and McIntyre, G. J., Charge density in orthorhombic NiSO4⋅7H2O at room temperature and 25 K. Acta Crystallogr., 1997, 53, 325–336.
- Frondel, C. and Palache, C., Retgersite, NiSO4⋅6H2O, a new mineral. Am. Mineral, 1949, 34, 188–194.
- Milton, C., Evans Jr, H. T. and Johnson, R. G., Dwornikite, (Ni,Fe)SO4⋅⋅⋅H2O, a member of the Kieserite Group from Minasragra, Peru. Mineral. Mag., 1982, 46, 351–355.
- Dimaras, P. I., Morphology and structure of anhydrous nickel sulphate. Acta Crystallogr., 1957, 10, 313–315.
- Leverett, P., McKinnon, A. R. and Williams, P. A., New data for boothite, CuSO4⋅7H2O, from Burranga, New South Wales. Aus. J. Mineral., 2004, 10, 3–6.
- Barth, T. F. W. and Tunell, G., The space-lattice and optical orientation of chalcanthite (CuSO4⋅5H2O); an illustration of the use of the Weissenberg X-ray goniometer in the triclinic system. Am. Mineral., 1933, 18, 187–194.
- Jambor, J. L., Second occurrence of bonattite. Can. Mineral., 1962, 7, 245–252.
- Jambor, J. L., Lachance, G. R. and Courville, S., Poitevinite, a new mineral. Can. Mineral., 1964, 8, 109–110.
- Kokkoros, P. A. and Rentzeperis, P. J., The crystal structure of the anhydrous sulfates of copper and zinc. Acta Crystallogr., 1958, 11, 361–364.
- Anderson, J. L., Peterson, R. C. and Swaison, I. P., Combined neutron powder and X-ray single-crystal diffraction refinement of the atomic structure and hydrogen bonding of goslarite (ZnSO4⋅7H2O). Miner. Mag., 2005, 69, 259–271.
- Thorpe, T. E. and Watts, J. I., On the specific volume of water of crystallisation. J. Chem. Soc., 1880, 37, 102–117.
- Blake, A. J., Cooke, P. A., Hubberstey, P. and Sampson, C. L., Zinc(II) sulfate tetrahydrate. Acta Crystallogr. E, 2001, 57, i109– i111.
- Jambor, J. L. and Boyle, R. W., Gunningite, a new zinc sulphate from the Keno Hill–Galena Hill area, Yukon. Can. Mineral., 1962, 7, 209–218.
- Wildner, M. and Giester, G., Crystal structure refinements of synthetic chalcocyanite (CuSO4) and zincosite (ZnSO4). Mineral. Petrol., 1988, 39, 201–209.
- Spiess, M. and Gruehn, R., H-ZnSO4, das ersteSulfatmiteinerkubischen H-Cristobalit-Struktur. Naturwissenschaften, 1978, 65, 594–594.
Abstract Views: 418
PDF Views: 141